PolarDB-X 1.0-用户指南-数据导入导出-通过数据集成导入导出数据

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 本文介绍如何通过数据集成在PolarDB-X中进行数据导入和导出。数据集成是阿里巴巴集团提供的数据同步平台。该平台具备可跨异构数据存储系统、可靠、安全、低成本、可弹性扩展等特点,可为20多种数据源提供不同网络环境下的离线(全量或增量)数据进出通道。

本文介绍如何通过数据集成在PolarDB-X中进行数据导入和导出。

数据集成是阿里巴巴集团提供的数据同步平台。该平台具备可跨异构数据存储系统、可靠、安全、低成本、可弹性扩展等特点,可为20多种数据源提供不同网络环境下的离线(全量或增量)数据进出通道。

使用数据集成,您可以在PolarDB-X完成以下数据同步任务:

  • 将PolarDB-X的数据同步到到其他的数据源里,并将数据进行相应的处理;
  • 将处理好的其他数据源数据同步到PolarDB-X。

本文包含以下内容:

流程概述

数据同步流程主要包含以下几个步骤:

  • 第一步:数据源端新建表
  • 第二步:添加数据源
  • 第三步:向导模式或脚本模式配置同步任务
  • 第四步:运行同步任务,检查目标端的数据质量

准备工作

使用数据集成在PolarDB-X进行数据导入导出之前,请先注册阿里云账号并参考创建RAM子账号文档,完成以下准备工作:

  1. 开通阿里云官网实名认证账号,创建好账号的访问密钥,即 AccessKeys。
  2. 开通 MaxCompute,这样会自动产生一个默认的 ODPS 的数据源,并使用主账号登录大数据开发套件。
  3. 创建项目。您可以在项目中协作完成工作流,共同维护数据和任务等,因此使用大数据开发套件之前需要先创建一个项目。
  4. 如果想通过子账号创建数据集成任务,可以赋予其相应的权限。

新添加数据源

下面以添加PolarDB-X的数据源为例。

注意:只有项目管理员角色才能够新建数据源,其他角色的成员仅能查看数据源。

  1. 以项目管理员身份登录数加管理控制台
  2. 项目列表中对应项目的操作栏单击进入工作区
  3. 进入顶部菜单栏中的数据集成页面,单击左侧导航栏中的数据源
  4. 点击右上角的新增数据源,如下图所示:

  5. 在新增数据源弹出框中填写相关配置项,如下图所示:针对PolarDB-X数据源配置项的具体说明如下:
  • 数据源名称:由英文字母、数字、下划线组成且需以字符或下划线开头,长度不超过 60 个字符 。
  • 数据源描述:对数据源进行简单描述,不得超过 80 个字符 。
  • 数据源类型:当前选择的数据源类型 DRDS。
  • 网络类型:当前选择的网络类型。
  • JDBCUrl:JDBC 连接信息,格式为jdbc://mysql://serverIP:Port/database
  • 用户名/密码:对应的用户名和密码。
  1. 完成上述信息项的配置后,单击测试连通性
  2. 测试连通性通过后,单击确定

通过数据集成导入数据

下文以通过数据集成的向导模式将 MaxCompute(原 ODPS)数据同步到PolarDB-X为例。

  1. 在数据集成页面,新建同步任务。
  • 向导模式:向导模式是可视化界面配置同步任务, 一共涉及五步选择来源,选择目标,字段映射,通道控制,预览保存五个步骤。在每个不同的数据源之间,这几步的界面可能有不同的内容。向导模式可以转换成脚本模式。
  • 脚本模式:进入脚本界面你可以选择相应的模板,此模板包含了同步任务的主要参数,将相关的信息填写完整,但是脚本模式不能转化成向导模式。
  1. 选择数据来源。选择 MaxCompute 数据源及源头表 mytest,数据浏览默认是收起的,选择后单击下一步

  2. 选择目标。选择PolarDB-X数据源及目标表contact_infos,选择后单击下一步
  • preSql:执行数据同步任务之前率先执行的 SQL 语句。目前向导模式只允许执行一条 SQL 语句,脚本模式可以支持多条 SQL 语句,例如清除旧数据。
  • postSql:执行数据同步任务之后执行的 SQL 语句。目前向导模式只允许执行一条 SQL 语句,脚本模式可以支持多条 SQL 语句,例如加上某一个时间戳。
  1. 选择字段的映射关系。左侧源头表字段和右侧目标表字段为一一对应的关系,如下图所示。

  2. 在通道控制页面单击下一步,配置作业速率上限和脏数据检查规则。
  • 作业速率上限:是指数据同步作业可能达到的最高速率,其最终实际速率受网络环境、数据库配置等的影响。
  • 作业并发数:作业速率上限=作业并发数 * 单并发的传输速率。
  1. 当作业速率上限已选定的情况下,可以根据以下原则选择并发数:
  • 如果你的数据源是线上的业务库,建议您不要将并发数设置过大,以防对线上库造成影响;
  • 如果您对数据同步速率特别在意,建议您选择最大作业速率上限和较大的作业并发数。
  1. 完成以上配置后,上下滚动鼠标可查看任务配置,确定无误后单击保存

  2. 单击运行任务,直接运行同步任务结果。您可以将同步任务提交到调度系统中,调度系统会按照配置属性从第二天开始自动定时执行。

脚本模式配置同步任务

  1. {
  2.  "type":"job",
  3.  "version":"1.0",
  4.  "configuration":{
  5.    "reader":{
  6.      "plugin":"odps",
  7.      "parameter":{
  8.        "datasource":"lzz_odps",//数据源的名称,建议都添加数据源后进行同步
  9.        "table":"mytest",//数据来源的表名
  10.        "partition":"",//分区信息
  11.        "column":[
  12.          "id"
  13.        ]
  14.      }
  15.    },
  16.    "writer":{
  17.      "plugin":"drds",
  18.      "parameter":{
  19.        "datasource":"l_Drds_w",//数据源的名称,建议都添加数据源后进行同步
  20.        "table":"contact_infos",//目的表名
  21.        "preSql":[],//导入前准备语句
  22.        "postSql":[],//导入后准备语句
  23.        "column":[
  24.          "id"
  25.        ]
  26.      }
  27.    },
  28.    "setting":{
  29.      "speed":{
  30.        "mbps":"1",//一个并发的速率上线是1MB/S
  31.        "concurrent":"1"//并发的数目
  32.      }
  33.    }
  34.  }
  35. }

通过数据集成导出数据

下文以通过向导模式将PolarDB-X数据同步到 MaxCompute 为例。

  1. 在数据集成页面,新建同步任务。

  2. 选择数据来源。选择PolarDB-X数据源及源头表 bit_type_test。数据浏览默认是收起的,选择后单击下一步,如下图所示:
  • 过滤条件:筛选条件,DrdsReader 根据指定的 column、table、where 条件拼接 SQL,并根据这个 SQL 进行数据抽取 。例如在做测试时,可以将 where 条件指定实际业务场景,往往会选择当天的数据进行同步,可以将 where 条件指定为STRTODATE(‘${bdp.system.bizdate}’, ‘%Y%m%d’) <= taday AND taday < DATEADD(STRTODATE(‘${bdp.system.bizdate}’, ‘%Y%m%d’), interval 1 day)
  • 切分键:您可以将源数据表中某一列作为切分键,切分之后可进行并发数据同步。目前仅支持整型字段;建议使用主键或有索引的列作为切分键。
  1. 选择 MaxCompute 数据源及目标表 mytest,选择后单击下一步

  2. 单击下一步,选择字段的映射关系。左侧源头表字段和右侧目标表字段为一一对应的关系:您也可以单击“添加一行”增加映射关系:
  • 可以输入常量,输入的值需要使用英文单引号包括,如’abc’、’123’等;
  • 可以配合调度参数使用,如’${bdp.system.bizdate}’等;
  • 可以输入关系数据库支持的函数,如now()count(1)等;
  • 如果您输入的值无法解析,则类型显示为’-‘。
  1. 在通道控制页面单击下一步,配置作业速率上限和脏数据检查规则。
  • 作业速率上限:是指数据同步作业可能达到的最高速率,其最终实际速率受网络环境、数据库配置等的影响。
  • 作业并发数:作业速率上限=作业并发数 * 单并发的传输速率。
  1. 当作业速率上限已选定的情况下,可以按以下原则选择并发数:
  • 如果你的数据源是线上的业务库,建议您不要将并发数设置过大,以防对线上库造成影响;
  • 如果您对数据同步速率特别在意,建议您选择最大作业速率上限和较大的作业并发数。
  1. 完成以上配置后,上下滚动鼠标可查看任务配置。确认无误后单击保存

  2. 单击运行任务直接运行同步任务结果。您也可以将同步任务提交到调度系统中,调度系统会按照配置属性从第二天开始自动定时执行。

脚本模式配置同步任务

  1. {
  2.  "type":"job",
  3.  "version":"1.0",
  4.  "configuration":{
  5.    "reader":{
  6.      "plugin":"drds",
  7.      "parameter":{
  8.        "datasource":"l_Drds_w",//数据源的名称,建议都添加数据源后进行同步
  9.        "table":"bit_type_test",/数据来源的表名
  10.        "where":"",
  11.        "splitPk":"col2",//切分键
  12.        "column":[
  13.          "idbit"
  14.        ]
  15.      }
  16.    },
  17.    "writer":{
  18.      "plugin":"odps",
  19.      "parameter":{
  20.        "datasource":"lzz_odps",//数据源的名称,建议都添加数据源后进行同步
  21.        "table":"mytest",
  22.        "truncate":true,
  23.        "partition":"",//分区信息
  24.        "column":[
  25.          "id"
  26.        ]
  27.      }
  28.    },
  29.    "setting":{
  30.      "speed":{
  31.        "mbps":"1",//作业速率上限
  32.        "concurrent":"1"//并发数
  33.      },
  34.      "errorLimit":{
  35.        "record":"234"//错误记录数
  36.      }
  37.    }
  38.  }
  39. }
相关文章
|
18天前
|
存储 NoSQL 关系型数据库
PolarDB开源数据库进阶课17 集成数据湖功能
本文介绍了如何在PolarDB数据库中接入pg_duckdb、pg_mooncake插件以支持数据湖功能, 可以读写对象存储的远程数据, 支持csv, parquet等格式, 支持delta等框架, 并显著提升OLAP性能。
32 0
|
18天前
|
存储 关系型数据库 分布式数据库
PolarDB开源数据库进阶课15 集成DeepSeek等大模型
本文介绍了如何在PolarDB数据库中接入私有化大模型服务,以实现多种应用场景。实验环境依赖于Docker容器中的loop设备模拟共享存储,具体搭建方法可参考相关系列文章。文中详细描述了部署ollama服务、编译并安装http和openai插件的过程,并通过示例展示了如何使用这些插件调用大模型API进行文本分析和情感分类等任务。此外,还探讨了如何设计表结构及触发器函数自动处理客户反馈数据,以及生成满足需求的SQL查询语句。最后对比了不同模型的回答效果,展示了deepseek-r1模型的优势。
63 0
|
4月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
4月前
|
人工智能 关系型数据库 分布式数据库
拥抱Data+AI|“全球第一”雅迪如何实现智能营销?DMS+PolarDB注入数据新活力
针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。
|
1月前
|
SQL 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 7.1 快速构建“海量逼真”数据
本文介绍了如何使用PostgreSQL和PolarDB快速生成“海量且逼真”的测试数据,以满足不同业务场景的需求。传统数据库测试依赖标准套件(如TPC-C、TPC-H),难以生成符合特定业务特征的复杂数据。通过自定义函数(如`gen_random_int`、`gen_random_string`等)、SRF函数(如`generate_series`)和pgbench工具,可以高效生成大规模、高仿真度的数据,并进行压力测试。文中还提供了多个示例代码展示.
43 7
|
2月前
|
存储 关系型数据库 分布式数据库
PolarDB PG 版冷热数据分层功能介绍
本文介绍了云原生数据库PolarDB PG版的冷热数据分层存储功能,涵盖其原理、特性及最佳实践。冷热分层存储通过将冷数据归档至OSS(对象存储服务),实现低成本高效存储,同时保持SQL操作透明性和性能优化。支持多种分层模式,如表与索引分层、大字段独立归档等,并提供压缩和缓存机制以提升访问速度。此外,还介绍了如何通过DDL语句轻松转存数据至OSS,以及一系列最佳实践,包括自动冷热分层、无锁表转存和一键转存等功能。
171 36
|
11天前
|
人工智能 关系型数据库 分布式数据库
阿里云PolarDB重磅发布云原生与Data+AI新特性,打造智能时代数据引擎
阿里云PolarDB重磅发布云原生与Data+AI新特性,打造智能时代数据引擎
|
5月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云瑶池在2024云栖大会上重磅发布由Data+AI驱动的多模数据管理平台DMS:OneMeta+OneOps,通过统一、开放、多模的元数据服务实现跨环境、跨引擎、跨实例的统一治理,可支持高达40+种数据源,实现自建、他云数据源的无缝对接,助力业务决策效率提升10倍。
|
6月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云数据库重磅升级!元数据服务OneMeta + OneOps统一管理多模态数据
|
6月前
|
并行计算 关系型数据库 分布式数据库
朗坤智慧科技「LiEMS企业管理信息系统」通过PolarDB产品生态集成认证!
近日,朗坤智慧科技股份有限公司「LiEMS企业管理信息系统软件」通过PolarDB产品生态集成认证!

相关产品

  • 云原生分布式数据库 PolarDB-X