DL之LSTM之MvP:基于TF利用LSTM基于DIY时间训练csv文件数据预测后100个数据(多值预测)状态

简介: DL之LSTM之MvP:基于TF利用LSTM基于DIY时间训练csv文件数据预测后100个数据(多值预测)状态

数据集csv文件内容

image.png


输出结果

image.png


设计思路

image.png


训练记录全过程

2018-10-17 14:33:28.811258: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce 940MX, pci bus id: 0000:01:00.0, compute capability: 5.0)

INFO:tensorflow:Saving checkpoints for 1 into C:\Users\……\AppData\Local\Temp\tmpxvos_wek\model.ckpt.

INFO:tensorflow:loss = 1.99025, step = 1

INFO:tensorflow:global_step/sec: 12.7154

INFO:tensorflow:loss = 0.407616, step = 101 (7.870 sec)

INFO:tensorflow:Saving checkpoints for 200 into C:\Users\……\AppData\Local\Temp\tmpxvos_wek\model.ckpt.

INFO:tensorflow:Loss for final step: 0.159871.

INFO:tensorflow:Starting evaluation at 2018-10-17-06:33:55

2018-10-17 14:33:55.520513: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce 940MX, pci bus id: 0000:01:00.0, compute capability: 5.0)

INFO:tensorflow:Restoring parameters from C:\Users\……\AppData\Local\Temp\tmpxvos_wek\model.ckpt-200

INFO:tensorflow:Evaluation [1/1]

INFO:tensorflow:Finished evaluation at 2018-10-17-06:33:56

INFO:tensorflow:Saving dict for global step 200: global_step = 200, loss = 0.0914701, mean = [[[-0.02258123  1.20125902  2.46149969  3.74098039  5.00599146]

 [-0.72656935  1.46578288  2.55133963  3.57579684  4.71380329]

 [-0.93369555  1.27410793  2.461622    3.36797333  4.47852659]

 [-0.28303617  1.04424524  2.28791738  3.17969871  4.3186183 ]

 [ 0.03985038  0.77593756  2.13191533  3.18373418  4.19481421]

 [-0.59239888  0.47297943  1.80378556  3.25553274  4.16365004]

 [-0.78655541  0.5069496   1.60384321  3.120368    4.42847204]

 [ 0.16859503  0.73337585  1.61688042  3.07779312  4.62821817]

 [ 0.75624537  1.12221634  1.78613925  3.33996463  4.76050758]

 [-0.18138258  1.6589669   2.04715395  3.553339    4.89331532]

 [-0.85793096  1.92421985  2.32753062  3.51988888  5.09496164]

 [ 0.27542502  2.20485401  2.57294631  3.66244674  5.32275152]

 [ 1.0331111   2.32110286  2.92849159  3.74277306  5.4806776 ]

 [-0.31996989  2.0762732   3.00064945  3.91731429  5.53373528]

 [-1.13102674  1.54052997  3.18407869  4.14603806  5.69867373]

 [ 0.28646153  1.02832162  3.37013149  4.43634033  5.75095129]

 [ 1.00686896  0.58188593  3.53338814  4.49843788  5.85889435]

 [-0.51223803  0.2763325   3.41038799  4.54861832  5.83758831]

 [-1.0338639   0.21294475  3.2338388   4.72177982  5.83597088]

 [ 0.26228762  0.40723181  3.15446091  4.76411152  5.85220051]

 [ 0.76278716  0.66311061  3.03175783  4.69197798  5.87075472]

 [-0.45436215  1.13117456  2.76854038  4.61343575  5.85332823]

 [-0.87863731  1.54986215  2.33939052  4.57823992  5.82480431]

 [ 0.39277369  1.8990984   2.10363054  4.42317438  5.8106041 ]

 [ 0.99085194  2.13706136  1.87079835  4.18970537  5.8008256 ]

 [-0.52076232  2.05188704  1.74643803  4.05304956  5.72936773]

 [-0.97566265  1.69756258  1.62115216  3.93999577  5.57423878]

 [ 0.43046591  1.39184296  1.65154696  3.71441293  5.45222044]

 [ 0.88588709  1.04985034  1.66515064  3.51741457  5.32099676]

 [-0.72021019  0.54022431  1.68251848  3.34307003  5.02586746]

 [-0.99685818  0.29293615  1.81516552  3.04635096  4.92267561]

 [ 0.44880253  0.35789663  2.05799055  2.88136172  4.85719347]

 [ 0.79797494  0.61584455  2.40396357  2.89541912  4.63176489]

 [-0.65483415  0.94648749  2.64026642  2.83008909  4.46917629]

 [-0.80363208  1.36413217  2.76368833  2.73575735  4.34707785]

 [ 0.62078804  1.82089138  2.99507046  2.72794437  4.23858547]

 [ 0.76629472  2.19677806  3.32607484  2.82271099  4.09487867]

 [-0.78800523  2.26259255  3.48484802  2.91107988  3.99762201]

 [-0.75864941  2.10827589  3.51060867  2.99060631  4.02838755]

 [ 0.78492832  1.87137747  3.5965333   3.09973478  4.06794024]

 [ 0.6314953   1.40174592  3.51098204  3.28556228  3.97504044]

 [-0.83633691  0.80587745  3.15457964  3.51566696  4.00417137]

 [-0.6733321   0.45035005  2.85752249  3.7064538   4.15681696]

 [ 0.68248016  0.20115876  2.60771561  3.91507864  4.24229527]

 [ 0.62391466  0.21057343  2.31893015  4.1396451   4.15356827]

 [-0.80487281  0.54158294  2.04153323  4.40795135  4.19229746]

 [-0.69418651  1.03371727  1.8360095   4.52020407  4.39075708]

 [ 0.78446406  1.38377047  1.67458987  4.57382059  4.57684278]

 [ 0.55859393  1.90988648  1.54792333  4.67716694  4.6954608 ]

 [-0.97675616  2.15290236  1.39113235  4.73126888  4.91898394]

 [-0.54306972  2.15442061  1.46775818  4.77496624  5.09109259]

 [ 0.76895946  2.07765841  1.506634    4.75528717  5.2398057 ]

 [ 0.34301981  1.68889821  1.67374158  4.69288206  5.39653444]

 [-0.91761684  1.13869679  1.91118884  4.60692167  5.49643993]

 [-0.47333306  0.69090563  2.23274636  4.49918842  5.56999016]

 [ 0.80657309  0.3588593   2.67364287  4.30588436  5.63451719]

 [ 0.52129406  0.28135842  3.03734875  4.08425713  5.72058821]

 [-0.87032658  0.30913079  3.13875175  3.87309504  5.82510281]

 [-0.38541344  0.58203012  3.22977924  3.70223856  5.87730312]

 [ 0.92312407  0.97287679  3.4374516   3.46826148  5.92560816]

 [ 0.38667771  1.57088554  3.57924008  3.18373251  5.97714472]

 [-0.96847367  1.95864582  3.46318865  2.99153256  5.9243679 ]

 [-0.29042897  2.15955973  3.28767014  2.92731619  5.80609179]

 [ 1.05476689  2.23997283  3.10138607  2.74227214  5.72408485]

 [ 0.26864958  1.96871543  2.81539583  2.67804813  5.64276505]

 [-1.11794412  1.45112896  2.54433537  2.77567339  5.55643272]

 [-0.26396298  0.96271485  2.42007947  2.90135527  5.47261381]

 [ 1.02105784  0.71554309  2.19740963  2.93254256  5.33089495]

 [ 0.08677568  0.34677446  1.87187743  3.03682566  5.10183382]

 [-1.11194074  0.15401816  1.66281927  3.15410566  4.97747374]

 [-0.12272341  0.30180877  1.52159286  3.18472672  4.94240236]

 [ 0.98251247  0.69807512  1.54382443  3.46032691  4.70980072]

 [ 0.04094632  1.22731531  1.67413783  3.83074236  4.43305254]

 [-1.00694048  1.65609658  1.762411    4.03825426  4.34276962]

 [-0.05897149  2.0092473   1.91996717  4.16084623  4.32943392]

 [ 0.91650641  2.22678471  2.12102604  4.30212688  4.19473886]

 [-0.03337113  2.1746881   2.37334609  4.39889717  4.02976465]

 [-1.0127815   1.92308354  2.61303473  4.56022596  3.94330001]

 [ 0.01059423  1.54359317  2.90251637  4.71572495  3.96141529]

 [ 1.03956962  1.11690688  3.25370812  4.86467266  3.97466874]

 [ 0.09197591  0.67883945  3.38240027  4.86860847  3.96421003]

 [-0.84794611  0.28496414  3.42090082  4.82572269  4.04805946]

 [ 0.21027137  0.17020655  3.4868753   4.69520617  4.18217802]

 [ 1.01854718  0.26949811  3.63699007  4.57096434  4.17454147]

 [-0.22191104  0.68545365  3.378582    4.41910028  4.15620136]

 [-0.97954774  1.18409562  3.06682301  4.31807613  4.28068304]

 [ 0.37906742  1.62706232  2.79079866  4.16520739  4.43478918]

 [ 1.10579622  2.03329659  2.54347825  3.92974758  4.61650276]

 [-0.28453454  2.20910454  2.19329453  3.73508215  4.73528385]

 [-1.03763247  2.18529534  1.81834531  3.66158772  4.93438673]

 [ 0.22151242  1.97848916  1.63359141  3.46144772  5.14855433]

 [ 0.96506304  1.52342212  1.46656311  3.22499657  5.37121248]

 [-0.28004175  0.94278771  1.38676071  3.07118821  5.54157686]

 [-0.78861243  0.53288817  1.50251698  2.868891    5.65895605]

 [ 0.37555215  0.3845585   1.7211839   2.72783947  5.80253601]

 [ 0.71072179  0.35191894  1.86516833  2.74501562  5.87327385]

 [-0.66796905  0.4802804   2.06942296  2.74930239  5.83967638]

 [-0.91003895  0.74719334  2.2557373   2.69235229  5.83291674]

 [ 0.46069285  1.3816551   2.70611811  2.81655002  5.91043425]

 [ 0.89528     1.958776    3.00707531  2.85689092  5.92750597]]], observed = [[[ 0.92690629  1.99107242  2.56546235  3.07914758  4.04839039]

 [ 0.10801     1.4164536   2.16868401  2.94963956  4.1263504 ]

 [-0.80056763  1.01721334  1.96434748  2.99885345  4.04300499]

 [ 0.06070429  0.71954006  1.97650123  2.89265585  4.09510136]

 [ 0.93371218  0.28052121  1.41018558  2.69232607  4.06481171]

 [-0.17173065  0.26005441  1.48770821  2.6219914   4.4457283 ]

 [-1.00180161  0.33304515  1.5000639   2.88888311  4.24755859]

 [ 0.05800619  0.68892938  1.56543458  2.99840355  4.52726889]

 [ 0.76413947  1.24704874  1.77649283  3.13578606  4.63238907]

 [-0.23033187  1.47904003  2.03547549  3.20624042  4.77979994]

 [-1.03846049  2.01132989  2.3197751   3.67951536  5.09716797]

 [ 0.18864359  2.23285341  2.6833849   3.49817157  5.24928236]

 [ 0.91207302  2.24244452  2.71362615  3.96332598  5.37802267]

 [-0.29658866  2.02594638  3.07733917  3.99698329  5.56365919]

 [-0.95996147  1.45078635  3.18996429  4.37630606  5.65356016]

 [ 0.4631353   1.01141441  3.4980216   4.20224905  5.88842249]

 [ 0.92935413  0.62663531  3.70508265  4.51791573  5.73945951]

 [-0.51911074  0.26924923  3.39866829  4.46801996  5.82768154]

 [-0.92433101  0.34960285  3.21762419  4.72803593  5.94918919]

 [ 0.25323939  0.34515801  3.1107142   4.79311562  5.94892597]

 [ 0.63740838  0.69899666  3.25232482  4.73814726  5.96120119]

 [-0.40739685  1.17456341  2.49526834  4.59323406  5.82501698]

 [-0.96748543  1.66655934  2.47284603  4.5831604   5.88721418]

 [ 0.47448087  1.95018554  2.0228951   4.48651123  5.82559443]

 [ 1.04309654  2.23519897  1.91924131  4.19094658  5.87457371]

 [-0.51786149  2.12501979  1.70266616  4.05280876  5.72160912]

 [-0.94530159  1.65464652  1.8156718   3.92309856  5.58270502]

 [ 0.50115389  1.40600765  1.53991389  3.72853255  5.60168982]

 [ 0.9728595   1.00344324  1.5175643   3.64092374  5.10567713]

 [-0.70553404  0.46530625  1.70385408  3.33236861  5.09182501]

 [-0.94609362  0.2945393   1.88052821  2.93011498  4.97354937]

 [ 0.47922122  0.30846587  2.03445888  2.90772891  4.8624177 ]

 [ 0.75402999  0.54975224  2.46115804  2.95063353  4.71834612]

 [-0.64875948  0.89461547  2.59224629  2.8126986   4.4348011 ]

 [-0.75782996  1.39123917  2.6925807   2.61834836  4.36580038]

 [ 0.56565332  1.72360027  2.97794914  2.80403829  4.27327251]

 [ 0.8674401   2.21100736  3.38648081  2.84057522  4.12210178]

 [-0.89456779  2.17549109  3.45532489  2.90446019  4.00251722]

 [-0.71544236  2.15105391  3.52041793  3.03650403  4.12809229]

 [ 0.80671704  1.8150456   3.60463333  3.007478    3.98440766]

 [ 0.52701479  1.31803513  3.43842196  3.33325958  4.03232384]

 [-0.79593688  0.84780914  3.09875131  3.52863145  3.94883919]

 [-0.61024582  0.42553043  2.9258194   3.77238727  4.27287245]

 [ 0.61166227  0.17843205  2.48128223  3.73212099  4.17319012]

 [ 0.65086657  0.22034165  2.41694641  4.26091003  4.27271652]

 [-0.77415699  0.6326676   2.05474353  4.32889223  4.18029737]

 [-0.71405846  0.92456239  1.75706136  4.52492714  4.39726782]

 [ 0.88962728  1.46207964  1.78299356  4.64466715  4.56317902]

 [ 0.52014065  1.89963341  1.4137764   4.48899078  4.78805065]

 [-1.03816938  2.08997011  1.51218379  4.84167767  4.93026066]

 [-0.40772951  2.30878973  1.44144416  4.76854467  5.01538467]

 [ 0.79273069  1.91367054  1.58887386  4.71739388  5.25690031]

 [ 0.37131187  1.67565084  1.81688559  4.60353088  5.44265842]

 [-0.81439805  1.13374639  1.8032881   4.72264242  5.5267477 ]

 [-0.46901795  0.60124415  2.29690886  4.4985919   5.54126167]

 [ 0.8710444   0.4075976   2.74991131  4.19060659  5.57693768]

 [ 0.52376491  0.24770519  3.09002066  4.02095509  5.80510378]

 [-0.88132638  0.31513104  3.11358213  3.96079111  5.81000662]

 [-0.35792804  0.48616391  3.17884564  3.72634983  5.85693645]

 [ 0.85303879  1.0421809   3.45835376  3.36703968  5.95859861]

 [ 0.43531153  1.5971508   3.63313341  3.11276722  5.93643808]

 [-1.02703714  1.92205834  3.47606111  3.06247163  6.02106667]

 [-0.24666132  2.14653802  3.29446316  2.89936256  5.67531538]

 [ 1.02554739  2.25943732  3.07031584  2.78176212  5.78206348]

 [ 0.33781448  2.07589149  2.80356216  2.558882    5.70940733]

 [-1.12023365  1.25333011  2.56497288  2.77361369  5.50799417]

 [-0.17898025  1.11937141  2.51598692  2.91438317  5.47469568]

 [ 0.97550952  0.60553825  2.11657739  2.88081098  5.37034988]

 [ 0.13665336  0.36582884  1.97386038  3.13217902  5.07254505]

 [-1.05607593  0.15315211  1.52110744  3.01308799  5.0890255 ]

 [-0.13095281  0.33711398  1.52703083  3.16687131  4.86649418]

 [ 1.07081056  0.71424758  1.53761387  3.45151997  4.75892305]

 [ 0.01534104  1.24631226  1.61690938  3.85482001  4.35683775]

 [-0.91280127  1.60791314  1.87292647  4.03037262  4.36072588]

 [-0.08948956  2.025352    1.93484914  4.09557486  4.35327005]

 [ 0.97864699  2.20085096  2.09003448  4.27542353  4.18050575]

 [-0.11331264  2.24441004  2.50789237  4.41518593  4.03267145]

 [-1.00215101  1.84305632  2.61691236  4.45425129  3.81203556]

 [-0.01832346  1.49573922  2.99308467  4.71134949  4.02738047]

 [ 1.08237386  1.12211585  3.27079391  4.94288254  4.01851082]

 [ 0.12437019  0.61647439  3.42842364  4.76942158  3.97495365]

 [-0.92942339  0.29097709  3.34131718  4.78590393  4.10190678]

 [ 0.23766303  0.15530205  3.4977951   4.64605665  4.15571308]

 [ 1.03531492  0.35970277  3.48807263  4.4816761   4.21134567]

 [-0.26123458  0.71387774  3.42756438  4.42644405  4.25208282]

 [-1.0357244   1.25001109  2.96908331  4.25500917  4.25723028]

 [ 0.38003427  1.70543361  2.73605943  4.16703415  4.6370039 ]

 [ 1.03734875  1.97544408  2.55586576  3.84976673  4.55282879]

 [-0.17734425  2.22614527  2.09565854  3.77378106  4.82577419]

 [-0.97682154  2.18385077  1.78522289  3.67768216  5.06302452]

 [ 0.26482049  1.8698194   1.50048399  3.436198    5.0565176 ]

 [ 1.05642343  1.47568643  1.51347673  3.20898509  5.50149059]

 [-0.31160742  1.0422647   1.52089655  3.0229187   5.48890448]

 [-0.72428578  0.55305231  1.48573565  2.7365973   5.72549152]

 [ 0.51985919  0.22652063  1.61543727  2.84102082  5.69330645]

 [ 1.03231955  0.26087323  1.8191303   2.83951139  5.90325022]

 [-0.53285682  0.38769552  1.70935607  2.57977057  5.7957921 ]

 [-0.975128    0.92094874  2.51292634  2.71004605  5.87016487]

 [ 0.54024678  1.36445475  2.6194942   2.98482561  6.02447653]

 [ 0.987764    1.85581994  2.84685707  2.94760203  6.02121496]]], start_tuple = (array([99], dtype=int64), array([[ 1.90218008,  1.28345549,  0.72423571, -1.54894197,  2.17917752]], dtype=float32), [array([[ -2.22468042e+00,  -3.22739661e-01,  -6.18114322e-02,

         4.74002242e-01,  -5.23656420e-02,  -2.63940424e-01,

         2.80045718e-02,   2.22113937e-01,   7.31745809e-02,

        -2.33156943e+00,  -1.49744606e+00,   2.86370039e-01,

         3.30500484e-01,  -1.84197664e-01,   5.84359467e-01,

         8.95263404e-02,   3.31098467e-01,  -5.55595458e-02,

         2.19679937e-01,   4.66475964e-01,   1.00609207e+00,

        -6.80337191e-01,  -9.78736401e+00,   1.32761359e+00,

         1.29839289e+00,   6.20648742e-01,   3.64024878e-01,

        -2.72545362e+00,  -1.84842551e+00,   2.84402132e-01,

        -5.29527247e-01,   1.95285118e+00,   4.56424505e-01,

        -4.28236783e-01,   9.59175944e-01,   1.41466355e+00,

         2.62957931e-01,   1.93796530e-01,  -9.76036131e-01,

         1.28407359e+00,  -1.97707772e-01,   2.88512230e+00,

         8.32995594e-01,  -5.32110453e-01,  -2.57556462e+00,

        -1.12045264e+00,  -4.03596491e-01,   3.89896929e-01,

        -3.27839553e-01,   7.90456533e-01,  -2.83772707e-01,

        -8.22015524e-01,   6.61805272e-01,   2.09804267e-01,

        -4.07952458e-01,  -2.95348197e-01,   4.17161107e-01,

        -9.93740320e-01,  -1.18675083e-01,  -8.23316276e-01,

         2.69034244e-02,  -1.88849556e+00,   2.10833088e-01,

         5.37440538e+00,   7.85503864e-01,   7.81758651e-02,

         1.53081512e+00,  -1.06369352e+00,  -1.14959764e+00,

         1.57518709e+00,   4.10526514e-01,  -1.17866611e+00,

        -1.43809450e+00,   3.01593304e-01,  -8.29981342e-02,

         7.02795267e-01,  -6.90528154e-01,  -1.18140829e+00,

         6.85002446e-01,   3.61282468e-01,   1.17086756e+00,

         2.45300770e-01,  -1.38156855e+00,   3.23621058e+00,

         1.34867221e-01,  -3.19625527e-01,  -3.63594890e-01,

         2.38367006e-01,   1.03092706e+00,  -6.15495563e-01,

         5.68815589e-01,   4.03137016e+00,  -3.29151098e-03,

        -1.63421535e+00,  -1.16476044e-02,  -4.56767917e-01,

        -1.25822902e+00,   4.02444005e-01,  -3.32886696e-01,

        -7.10357428e-01,   1.81120062e+00,   8.15002382e-01,

         9.54707742e-01,   1.79125595e+00,  -6.53005838e-01,

        -5.05221367e-01,   3.48849654e-01,   3.47478867e-01,

         1.50463963e+00,  -1.60333365e-01,  -1.44089317e+00,

        -5.46101689e-01,  -1.77607924e-01,   1.74866974e+00,

        -6.25463724e-01,  -2.33436361e-01,   5.01568556e-01,

        -6.51883841e-01,   1.31238520e-01,   5.75658679e-01,

         7.03148782e-01,   7.81953931e-01,  -8.42900515e-01,

        -2.76643723e-01,   5.93519658e-02,   6.59166038e-01,

        -4.52019334e-01,  -6.21397793e-01]], dtype=float32), array([[-0.82274085, -0.0831282 , -0.0401129 ,  0.39383799, -0.02410484,

       -0.16524354,  0.01380365,  0.1165917 ,  0.05850193, -0.69423026,

       -0.35230288,  0.23147044,  0.23356193, -0.13417032,  0.4211756 ,

        0.06820218,  0.29203904, -0.03941571,  0.16824852,  0.27811021,

        0.57919294, -0.44307229, -0.25352019,  0.64951479,  0.50807917,

        0.53396499,  0.33263975, -0.87917364, -0.66070503,  0.18152577,

       -0.28445041,  0.57785678,  0.22414218, -0.21887593,  0.55092806,

        0.57028347,  0.19546211,  0.10514873, -0.60573238,  0.57110918,

       -0.16360006,  0.85401636,  0.38677689, -0.30278051, -0.6265015 ,

       -0.49790761, -0.17754224,  0.15779942, -0.29400098,  0.31791395,

       -0.13823931, -0.38524339,  0.32180765,  0.12340824, -0.35963342,

       -0.12472892,  0.34280482, -0.42604545, -0.05306755, -0.50786221,

        0.00755332, -0.40128583,  0.14851592,  0.36195096,  0.24064459,

        0.0394078 ,  0.27046308, -0.67985237, -0.60897684,  0.622244  ,

        0.18340507, -0.67110789, -0.58534211,  0.09149791, -0.06835601,

        0.3644565 , -0.42829639, -0.47942913,  0.30781382,  0.27426034,

        0.61893439,  0.19592988, -0.57712489,  0.77699608,  0.03725263,

       -0.22094995, -0.08114401,  0.1133056 ,  0.68485337, -0.35594028,

        0.42454574,  0.58127284, -0.00092937, -0.79727775, -0.00490146,

       -0.31414184, -0.38323012,  0.21830694, -0.09383765, -0.39982662,

        0.6516341 ,  0.40829551,  0.69027084,  0.74982709, -0.18299167,

       -0.21854903,  0.24806808,  0.10432597,  0.64028525, -0.10168972,

       -0.5904057 , -0.40424132, -0.12101817,  0.65570384, -0.27304602,

       -0.10488962,  0.37432173, -0.35630706,  0.05456828,  0.41641083,

        0.40720937,  0.34507042, -0.59877414, -0.13994519,  0.03818761,

        0.46776542, -0.23145574, -0.46315274]], dtype=float32)]), times = [[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

 96 97 98 99]]

WARNING:tensorflow:Skipping summary for mean, must be a float, np.float32, np.int64, np.int32 or int.

WARNING:tensorflow:Skipping summary for observed, must be a float, np.float32, np.int64, np.int32 or int.

WARNING:tensorflow:Skipping summary for start_tuple, must be a float, np.float32, np.int64, np.int32 or int.

WARNING:tensorflow:Skipping summary for times, must be a float, np.float32, np.int64, np.int32 or int.

WARNING:tensorflow:Input graph does not contain a QueueRunner. That means predict yields forever. This is probably a mistake.

2018-10-17 14:33:57.701743: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1120] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce 940MX, pci bus id: 0000:01:00.0, compute capability: 5.0)

INFO:tensorflow:Restoring parameters from C:\Users\……\AppData\Local\Temp\tmpxvos_wek\model.ckpt-200

2018-10-17 14:33:58.032294: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.033565: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.034395: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.035351: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.036145: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.036830: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.037727: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.038556: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.039413: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.040245: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.041087: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.042030: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.043362: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.044424: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.045376: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.046395: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.047807: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.049811: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.050849: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]

2018-10-17 14:33:58.051606: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\framework\op_kernel.cc:1192] Out of range: Reached limit of 1

 [[Node: limit_epochs_2/CountUpTo = CountUpTo[T=DT_INT64, _class=["loc:@limit_epochs_2/epochs"], limit=1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](limit_epochs_2/epochs)]]


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
8月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
7月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
128 6
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
|
7月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM
这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。
|
8月前
|
机器学习/深度学习 数据可视化 TensorFlow
【视频】LSTM模型原理及其进行股票收盘价的时间序列预测讲解|附数据代码1
【视频】LSTM模型原理及其进行股票收盘价的时间序列预测讲解|附数据代码
|
8月前
|
机器学习/深度学习 数据可视化 网络架构
Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测
Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测
|
8月前
|
机器学习/深度学习 存储 数据可视化
【视频】LSTM模型原理及其进行股票收盘价的时间序列预测讲解|附数据代码2
【视频】LSTM模型原理及其进行股票收盘价的时间序列预测讲解|附数据代码
|
8月前
|
机器学习/深度学习 自然语言处理 算法
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
|
5月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。

热门文章

最新文章