CV之FR:DIY脚本通过人脸图像得到人脸特征向量并输出多张人脸图片之两两图片之间的距离

简介: CV之FR:DIY脚本通过人脸图像得到人脸特征向量并输出多张人脸图片之两两图片之间的距离

输出结果

image.png


设计思路

image.png

实现代码

from scipy import misc
import tensorflow as tf
import numpy as np
import sys
import os
import argparse
……


计算过程

prewhitened参数是 [[[ 0.12834621  0.69292342  0.78113861]

 [ 0.12834621  0.69292342  0.78113861]

 [ 0.12834621  0.67528038  0.78113861]

 ...

 [-1.77710188 -1.77710188 -1.61831454]

 [-1.63595757 -1.65360061 -1.44188416]

 [-1.33602593 -1.35366897 -1.12430948]]

[[ 0.25184747  0.74585253  0.93992595]

 [ 0.25184747  0.74585253  0.93992595]

 [ 0.28713355  0.74585253  0.93992595]

 ...

 [-1.77710188 -1.79474492 -1.65360061]

 [-1.75945884 -1.79474492 -1.56538542]

 [-1.63595757 -1.67124365 -1.40659808]]

[[ 0.28713355  0.78113861  0.97521202]

 [ 0.32241962  0.79878165  0.99285506]

 [ 0.3577057   0.81642468  1.0104981 ]

 ...

 [-1.77710188 -1.79474492 -1.65360061]

 [-1.77710188 -1.81238795 -1.6006715 ]

 [-1.79474492 -1.81238795 -1.6006715 ]]

...

[[-0.66559049 -0.41858796  0.07541709]

 [-0.55973227 -0.31272974  0.16363228]

 [-0.5773753  -0.33037278  0.18127532]

 ...

 [-0.10101328  0.16363228  0.76349557]

 [-0.13629936  0.14598925  0.74585253]

 [-0.25980062  0.05777406  0.65763734]]

[[-0.82437783 -0.5773753  -0.10101328]

 [-0.66559049 -0.41858796  0.05777406]

 [-0.59501834 -0.34801581  0.16363228]

 ...

 [-0.13629936  0.09306013  0.71056646]

 [-0.1539424   0.11070317  0.72820949]

 [-0.1539424   0.18127532  0.76349557]]

[[-0.96552214 -0.71851961 -0.24215759]

 [-0.77144872 -0.52444619 -0.04808417]

 [-0.64794746 -0.40094493  0.11070317]

 ...

 [-0.18922847  0.05777406  0.67528038]

 [-0.22451455  0.04013102  0.65763734]

 [-0.1539424   0.18127532  0.76349557]]]

prewhitened参数是 [[[-0.41843267  0.01911131  0.37196935]

 [-0.41843267  0.00499698  0.35785503]

 [-0.39020402  0.01911131  0.35785503]

 ...

 [-0.39020402  0.04733995  0.32962638]

 [-0.43254699  0.00499698  0.30139774]

 [-0.44666131 -0.00911734  0.28728342]]

[[-0.40431834  0.00499698  0.3437407 ]

 [-0.39020402  0.01911131  0.35785503]

 [-0.36197538  0.01911131  0.3437407 ]

 ...

 [-0.41843267  0.01911131  0.30139774]

 [-0.44666131 -0.00911734  0.28728342]

 [-0.44666131 -0.00911734  0.28728342]]

[[-0.40431834  0.00499698  0.32962638]

 [-0.41843267 -0.02323166  0.30139774]

 [-0.33374674  0.04733995  0.37196935]

 ...

 [-0.41843267  0.01911131  0.30139774]

 [-0.44666131 -0.00911734  0.28728342]

 [-0.46077563 -0.02323166  0.2731691 ]]

...

[[-1.67460729 -1.67460729 -1.67460729]

 [-1.67460729 -1.67460729 -1.67460729]

 [-1.67460729 -1.67460729 -1.67460729]

 ...

 [-1.60403568 -1.44877815 -1.19472036]

 [-1.64637865 -1.47700679 -1.25117764]

 [-1.67460729 -1.50523543 -1.27940629]]

[[-1.67460729 -1.67460729 -1.67460729]

 [-1.67460729 -1.67460729 -1.67460729]

 [-1.67460729 -1.67460729 -1.67460729]

 ...

 [-1.60403568 -1.44877815 -1.19472036]

 [-1.61815001 -1.44877815 -1.222949  ]

 [-1.66049297 -1.49112111 -1.26529196]]

[[-1.67460729 -1.67460729 -1.67460729]

 [-1.67460729 -1.67460729 -1.67460729]

 [-1.67460729 -1.67460729 -1.67460729]

 ...

 [-1.60403568 -1.44877815 -1.19472036]

 [-1.58992136 -1.4205495  -1.19472036]

 [-1.64637865 -1.47700679 -1.25117764]]]

prewhitened参数是 [[[-0.68576058 -0.65851282 -0.6721367 ]

 [-1.21709198 -1.18984422 -1.2034681 ]

 [-0.94461434 -0.91736658 -0.93099046]

 ...

 [-1.5849368  -1.5031935  -1.5849368 ]

 [-1.14897257 -1.06722928 -1.18984422]

 [-1.0536054  -0.95823822 -1.09447704]]

[[-1.08085316 -1.06722928 -1.08085316]

 [-1.36695468 -1.3533308  -1.36695468]

 [-1.5031935  -1.48956962 -1.5031935 ]

 ...

 [-1.39420245 -1.33970692 -1.39420245]

 [-1.42145021 -1.3533308  -1.44869798]

 [-1.38057857 -1.28521139 -1.40782633]]

[[-0.98548599 -0.98548599 -1.01273375]

 [-1.06722928 -1.06722928 -1.09447704]

 [-1.25796363 -1.25796363 -1.28521139]

 ...

 [-1.18984422 -1.18984422 -1.21709198]

 [-1.02635763 -1.02635763 -1.06722928]

 [-1.31245916 -1.29883527 -1.36695468]]

...

[[ 1.2215829   1.24883066  1.23520678]

 [ 1.23520678  1.26245454  1.24883066]

 [ 1.23520678  1.26245454  1.24883066]

 ...

 [ 0.43139774  0.44502162  0.49951715]

 [ 0.41777386  0.43139774  0.48589327]

 [ 0.43139774  0.44502162  0.49951715]]

[[ 1.23520678  1.26245454  1.24883066]

 [ 1.2215829   1.24883066  1.23520678]

 [ 1.20795901  1.23520678  1.2215829 ]

 ...

 [ 0.48589327  0.49951715  0.55401268]

 [ 0.47226939  0.48589327  0.5403888 ]

 [ 0.47226939  0.48589327  0.5403888 ]]

[[ 1.19433513  1.2215829   1.20795901]

 [ 1.16708737  1.19433513  1.18071125]

 [ 1.15346349  1.18071125  1.16708737]

 ...

 [ 0.67662762  0.6902515   0.74474703]

 [ 0.70387538  0.71749926  0.77199479]

 [ 0.73112314  0.74474703  0.79924255]]]

prewhitened参数是 [[[-1.35183598 -1.45036667 -1.43805033]

 [-1.32720331 -1.38878499 -1.38878499]

 [-1.35183598 -1.425734   -1.425734  ]

 ...

 [ 1.43165578  1.41933944  1.46860478]

 [ 1.44397211  1.41933944  1.46860478]

 [ 1.45628845  1.40702311  1.45628845]]

[[-1.52426468 -1.56121368 -1.54889735]

 [-1.56121368 -1.59816269 -1.58584635]

 [-1.51194834 -1.54889735 -1.53658101]

 ...

 [ 1.40702311  1.38239044  1.43165578]

 [ 1.41933944  1.39470677  1.44397211]

 [ 1.43165578  1.39470677  1.45628845]]

[[-1.57353002 -1.59816269 -1.58584635]

 [-1.57353002 -1.59816269 -1.58584635]

 [-1.52426468 -1.54889735 -1.53658101]

 ...

 [ 1.41933944  1.39470677  1.45628845]

 [ 1.40702311  1.3700741   1.44397211]

 [ 1.44397211  1.41933944  1.46860478]]

...

[[ 1.48092112  1.48092112  1.48092112]

 [ 1.48092112  1.48092112  1.48092112]

 [ 1.48092112  1.48092112  1.48092112]

 ...

 [-0.71138655 -0.77296823 -0.69907022]

 [-0.77296823 -0.8345499  -0.76065189]

 [-0.8345499  -0.89613158 -0.82223357]]

[[ 1.48092112  1.48092112  1.48092112]

 [ 1.48092112  1.48092112  1.48092112]

 [ 1.48092112  1.48092112  1.48092112]

 ...

 [-0.88381524 -0.94539692 -0.87149891]

 [-0.95771326 -1.01929493 -0.94539692]

 [-0.36652917 -0.42811084 -0.35421283]]

[[ 1.48092112  1.48092112  1.48092112]

 [ 1.48092112  1.48092112  1.48092112]

 [ 1.48092112  1.48092112  1.48092112]

 ...

 [-0.8345499  -0.92076425 -0.8345499 ]

 [-0.48969252 -0.57590686 -0.48969252]

 [-0.00935544 -0.09556979 -0.00935544]]]

images参数 [[[[ 0.12834621  0.69292342  0.78113861]

  [ 0.12834621  0.69292342  0.78113861]

  [ 0.12834621  0.67528038  0.78113861]

  ...

  [-1.77710188 -1.77710188 -1.61831454]

  [-1.63595757 -1.65360061 -1.44188416]

  [-1.33602593 -1.35366897 -1.12430948]]

 [[ 0.25184747  0.74585253  0.93992595]

  [ 0.25184747  0.74585253  0.93992595]

  [ 0.28713355  0.74585253  0.93992595]

  ...

  [-1.77710188 -1.79474492 -1.65360061]

  [-1.75945884 -1.79474492 -1.56538542]

  [-1.63595757 -1.67124365 -1.40659808]]

 [[ 0.28713355  0.78113861  0.97521202]

  [ 0.32241962  0.79878165  0.99285506]

  [ 0.3577057   0.81642468  1.0104981 ]

  ...

  [-1.77710188 -1.79474492 -1.65360061]

  [-1.77710188 -1.81238795 -1.6006715 ]

  [-1.79474492 -1.81238795 -1.6006715 ]]

 ...

 [[-0.66559049 -0.41858796  0.07541709]

  [-0.55973227 -0.31272974  0.16363228]

  [-0.5773753  -0.33037278  0.18127532]

  ...

  [-0.10101328  0.16363228  0.76349557]

  [-0.13629936  0.14598925  0.74585253]

  [-0.25980062  0.05777406  0.65763734]]

 [[-0.82437783 -0.5773753  -0.10101328]

  [-0.66559049 -0.41858796  0.05777406]

  [-0.59501834 -0.34801581  0.16363228]

  ...

  [-0.13629936  0.09306013  0.71056646]

  [-0.1539424   0.11070317  0.72820949]

  [-0.1539424   0.18127532  0.76349557]]

 [[-0.96552214 -0.71851961 -0.24215759]

  [-0.77144872 -0.52444619 -0.04808417]

  [-0.64794746 -0.40094493  0.11070317]

  ...

  [-0.18922847  0.05777406  0.67528038]

  [-0.22451455  0.04013102  0.65763734]

  [-0.1539424   0.18127532  0.76349557]]]

[[[-0.41843267  0.01911131  0.37196935]

  [-0.41843267  0.00499698  0.35785503]

  [-0.39020402  0.01911131  0.35785503]

  ...

  [-0.39020402  0.04733995  0.32962638]

  [-0.43254699  0.00499698  0.30139774]

  [-0.44666131 -0.00911734  0.28728342]]

 [[-0.40431834  0.00499698  0.3437407 ]

  [-0.39020402  0.01911131  0.35785503]

  [-0.36197538  0.01911131  0.3437407 ]

  ...

  [-0.41843267  0.01911131  0.30139774]

  [-0.44666131 -0.00911734  0.28728342]

  [-0.44666131 -0.00911734  0.28728342]]

 [[-0.40431834  0.00499698  0.32962638]

  [-0.41843267 -0.02323166  0.30139774]

  [-0.33374674  0.04733995  0.37196935]

  ...

  [-0.41843267  0.01911131  0.30139774]

  [-0.44666131 -0.00911734  0.28728342]

  [-0.46077563 -0.02323166  0.2731691 ]]

 ...

 [[-1.67460729 -1.67460729 -1.67460729]

  [-1.67460729 -1.67460729 -1.67460729]

  [-1.67460729 -1.67460729 -1.67460729]

  ...

  [-1.60403568 -1.44877815 -1.19472036]

  [-1.64637865 -1.47700679 -1.25117764]

  [-1.67460729 -1.50523543 -1.27940629]]

 [[-1.67460729 -1.67460729 -1.67460729]

  [-1.67460729 -1.67460729 -1.67460729]

  [-1.67460729 -1.67460729 -1.67460729]

  ...

  [-1.60403568 -1.44877815 -1.19472036]

  [-1.61815001 -1.44877815 -1.222949  ]

  [-1.66049297 -1.49112111 -1.26529196]]

 [[-1.67460729 -1.67460729 -1.67460729]

  [-1.67460729 -1.67460729 -1.67460729]

  [-1.67460729 -1.67460729 -1.67460729]

  ...

  [-1.60403568 -1.44877815 -1.19472036]

  [-1.58992136 -1.4205495  -1.19472036]

  [-1.64637865 -1.47700679 -1.25117764]]]

[[[-0.68576058 -0.65851282 -0.6721367 ]

  [-1.21709198 -1.18984422 -1.2034681 ]

  [-0.94461434 -0.91736658 -0.93099046]

  ...

  [-1.5849368  -1.5031935  -1.5849368 ]

  [-1.14897257 -1.06722928 -1.18984422]

  [-1.0536054  -0.95823822 -1.09447704]]

 [[-1.08085316 -1.06722928 -1.08085316]

  [-1.36695468 -1.3533308  -1.36695468]

  [-1.5031935  -1.48956962 -1.5031935 ]

  ...

  [-1.39420245 -1.33970692 -1.39420245]

  [-1.42145021 -1.3533308  -1.44869798]

  [-1.38057857 -1.28521139 -1.40782633]]

 [[-0.98548599 -0.98548599 -1.01273375]

  [-1.06722928 -1.06722928 -1.09447704]

  [-1.25796363 -1.25796363 -1.28521139]

  ...

  [-1.18984422 -1.18984422 -1.21709198]

  [-1.02635763 -1.02635763 -1.06722928]

  [-1.31245916 -1.29883527 -1.36695468]]

 ...

 [[ 1.2215829   1.24883066  1.23520678]

  [ 1.23520678  1.26245454  1.24883066]

  [ 1.23520678  1.26245454  1.24883066]

  ...

  [ 0.43139774  0.44502162  0.49951715]

  [ 0.41777386  0.43139774  0.48589327]

  [ 0.43139774  0.44502162  0.49951715]]

 [[ 1.23520678  1.26245454  1.24883066]

  [ 1.2215829   1.24883066  1.23520678]

  [ 1.20795901  1.23520678  1.2215829 ]

  ...

  [ 0.48589327  0.49951715  0.55401268]

  [ 0.47226939  0.48589327  0.5403888 ]

  [ 0.47226939  0.48589327  0.5403888 ]]

 [[ 1.19433513  1.2215829   1.20795901]

  [ 1.16708737  1.19433513  1.18071125]

  [ 1.15346349  1.18071125  1.16708737]

  ...

  [ 0.67662762  0.6902515   0.74474703]

  [ 0.70387538  0.71749926  0.77199479]

  [ 0.73112314  0.74474703  0.79924255]]]

[[[-1.35183598 -1.45036667 -1.43805033]

  [-1.32720331 -1.38878499 -1.38878499]

  [-1.35183598 -1.425734   -1.425734  ]

  ...

  [ 1.43165578  1.41933944  1.46860478]

  [ 1.44397211  1.41933944  1.46860478]

  [ 1.45628845  1.40702311  1.45628845]]

 [[-1.52426468 -1.56121368 -1.54889735]

  [-1.56121368 -1.59816269 -1.58584635]

  [-1.51194834 -1.54889735 -1.53658101]

  ...

  [ 1.40702311  1.38239044  1.43165578]

  [ 1.41933944  1.39470677  1.44397211]

  [ 1.43165578  1.39470677  1.45628845]]

 [[-1.57353002 -1.59816269 -1.58584635]

  [-1.57353002 -1.59816269 -1.58584635]

  [-1.52426468 -1.54889735 -1.53658101]

  ...

  [ 1.41933944  1.39470677  1.45628845]

  [ 1.40702311  1.3700741   1.44397211]

  [ 1.44397211  1.41933944  1.46860478]]

 ...

 [[ 1.48092112  1.48092112  1.48092112]

  [ 1.48092112  1.48092112  1.48092112]

  [ 1.48092112  1.48092112  1.48092112]

  ...

  [-0.71138655 -0.77296823 -0.69907022]

  [-0.77296823 -0.8345499  -0.76065189]

  [-0.8345499  -0.89613158 -0.82223357]]

 [[ 1.48092112  1.48092112  1.48092112]

  [ 1.48092112  1.48092112  1.48092112]

  [ 1.48092112  1.48092112  1.48092112]

  ...

  [-0.88381524 -0.94539692 -0.87149891]

  [-0.95771326 -1.01929493 -0.94539692]

  [-0.36652917 -0.42811084 -0.35421283]]

 [[ 1.48092112  1.48092112  1.48092112]

  [ 1.48092112  1.48092112  1.48092112]

  [ 1.48092112  1.48092112  1.48092112]

  ...

  [-0.8345499  -0.92076425 -0.8345499 ]

  [-0.48969252 -0.57590686 -0.48969252]

  [-0.00935544 -0.09556979 -0.00935544]]]]

(4, 160, 160, 3)


相关文章
|
8月前
|
机器学习/深度学习 算法 Shell
【实操:人脸矫正】两次定位操作解决人脸矫正问题
【实操:人脸矫正】两次定位操作解决人脸矫正问题
256 0
|
3月前
|
Serverless 计算机视觉
语义分割笔记(三):通过opencv对mask图片来画分割对象的外接椭圆
这篇文章介绍了如何使用OpenCV库通过mask图像绘制分割对象的外接椭圆。首先,需要加载mask图像,然后使用`cv2.findContours()`寻找轮廓,接着用`cv2.fitEllipse()`拟合外接椭圆,最后用`cv2.ellipse()`绘制椭圆。文章提供了详细的代码示例,展示了从读取图像到显示结果的完整过程。
75 0
语义分割笔记(三):通过opencv对mask图片来画分割对象的外接椭圆
|
5月前
|
存储 C# 计算机视觉
将彩色图转化为灰度图及其原理介绍
将彩色图转化为灰度图及其原理介绍
114 0
|
8月前
|
计算机视觉 索引
【OpenCV】—ROI区域图像叠加&图像混合
【OpenCV】—ROI区域图像叠加&图像混合
|
8月前
[Halcon&图像] 图像、区域和轮廓相互转化
[Halcon&图像] 图像、区域和轮廓相互转化
315 1
|
定位技术
任意一张图片的CGCS2000坐标配准
任意一张图片的CGCS2000坐标配准
160 0
|
机器学习/深度学习 算法 计算机视觉
数字图像处理实验(一)|图像的基本操作和基本统计指标计算{图像读取imread、图像写入imwrite、图像显示imshow、图像的相关统计量|均值、方差、大小尺寸裁减旋转|}(附实验代码和实验截图)
数字图像处理实验(一)|图像的基本操作和基本统计指标计算{图像读取imread、图像写入imwrite、图像显示imshow、图像的相关统计量|均值、方差、大小尺寸裁减旋转|}(附实验代码和实验截图)
512 0
数字图像处理实验(一)|图像的基本操作和基本统计指标计算{图像读取imread、图像写入imwrite、图像显示imshow、图像的相关统计量|均值、方差、大小尺寸裁减旋转|}(附实验代码和实验截图)
|
计算机视觉
图像的点云拼接
理解好图像的点云拼接,需要从相机的模型说起。理解相机的成像原理之后。 便可更为深刻的理解 图像的点云 如何拼接在一起。
图像的点云拼接
|
算法 计算机视觉
CV之Hog+HamMingDistance:基于Hog提取和汉明距离对比的应用—图像相似度对比之for循环将多个成对图片依次对比并输出相似度
CV之Hog+HamMingDistance:基于Hog提取和汉明距离对比的应用—图像相似度对比之for循环将多个成对图片依次对比并输出相似度
CV之Hog+HamMingDistance:基于Hog提取和汉明距离对比的应用—图像相似度对比之for循环将多个成对图片依次对比并输出相似度

热门文章

最新文章