ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)-阿里云开发者社区

开发者社区> 一个处女座的程序猿> 正文

ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)

简介: ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)
+关注继续查看

三、CV方向


1、《ImageNet Classification with Deep Convolutional  Neural Networks》


Alex Krizhevsky University of Toronto      Ilya Sutskever University of Toronto       Geoffrey E. Hinton University of Toronto


REFERENCES

[1] R.M. Bell and Y. Koren. Lessons from the netflix prize challenge. ACM SIGKDD Explorations Newsletter,

9(2):75–79, 2007.

[2] A. Berg, J. Deng, and L. Fei-Fei. Large scale visual recognition challenge 2010. www.imagenet.org/challenges.

2010.

[3] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[4] D. Cire¸san, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification.

Arxiv preprint arXiv:1202.2745, 2012.

[5] D.C. Cire¸san, U. Meier, J. Masci, L.M. Gambardella, and J. Schmidhuber. High-performance neural

networks for visual object classification. Arxiv preprint arXiv:1102.0183, 2011.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical

Image Database. In CVPR09, 2009.

[7] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L. Fei-Fei. ILSVRC-2012, 2012. URL

http://www.image-net.org/challenges/LSVRC/2012/.

[8] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An

incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding,

106(1):59–70, 2007.

[9] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report 7694, California

Institute of Technology, 2007. URL http://authors.library.caltech.edu/7694.

[10] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov. Improving neural networks

by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[11] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. What is the best multi-stage architecture for

object recognition? In International Conference on Computer Vision, pages 2146–2153. IEEE, 2009.

[12] A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Department of

Computer Science, University of Toronto, 2009.

[13] A. Krizhevsky. Convolutional deep belief networks on cifar-10. Unpublished manuscript, 2010.

[14] A. Krizhevsky and G.E. Hinton. Using very deep autoencoders for content-based image retrieval. In

ESANN, 2011.

[15] Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, et al. Handwritten

digit recognition with a back-propagation network. In Advances in neural information processing

systems, 1990.

[16] Y. LeCun, F.J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to

pose and lighting. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the

2004 IEEE Computer Society Conference on, volume 2, pages II–97. IEEE, 2004.

[17] Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks and applications in vision. In

Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pages 253–256.

IEEE, 2010.

[18] H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng. Convolutional deep belief networks for scalable unsupervised

learning of hierarchical representations. In Proceedings of the 26th Annual International Conference

on Machine Learning, pages 609–616. ACM, 2009.

[19] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric Learning for Large Scale Image Classifi-

cation: Generalizing to New Classes at Near-Zero Cost. In ECCV - European Conference on Computer

Vision, Florence, Italy, October 2012.

[20] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proc. 27th

International Conference on Machine Learning, 2010.

[21] N. Pinto, D.D. Cox, and J.J. DiCarlo. Why is real-world visual object recognition hard? PLoS computational

biology, 4(1):e27, 2008.

[22] N. Pinto, D. Doukhan, J.J. DiCarlo, and D.D. Cox. A high-throughput screening approach to discovering

good forms of biologically inspired visual representation. PLoS computational biology, 5(11):e1000579,

2009.

[23] B.C. Russell, A. Torralba, K.P. Murphy, and W.T. Freeman. Labelme: a database and web-based tool for

image annotation. International journal of computer vision, 77(1):157–173, 2008.

[24] J. Sánchez and F. Perronnin. High-dimensional signature compression for large-scale image classification.

In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1665–1672. IEEE,

2011.

[25] P.Y. Simard, D. Steinkraus, and J.C. Platt. Best practices for convolutional neural networks applied to

visual document analysis. In Proceedings of the Seventh International Conference on Document Analysis

and Recognition, volume 2, pages 958–962, 2003.

[26] S.C. Turaga, J.F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Briggman, W. Denk, and H.S. Seung. Convolutional

networks can



2、《Faster R-CNN: Towards Real-Time Object  Detection with Region Proposal Networks》


Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun


REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling

in deep convolutional networks for visual recognition,” in

European Conference on Computer Vision (ECCV), 2014.

[2] R. Girshick, “Fast R-CNN,” in IEEE International Conference on

Computer Vision (ICCV), 2015.

[3] K. Simonyan and A. Zisserman, “Very deep convolutionalnetworks for large-scale image recognition,” in International

Conference on Learning Representations (ICLR), 2015.

[4] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders,

“Selective search for object recognition,” International

Journal of Computer Vision (IJCV), 2013.

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature

hierarchies for accurate object detection and semantic segmentation,”

in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2014.

[6] C. L. Zitnick and P. Dollar, “Edge boxes: Locating object ´

proposals from edges,” in European Conference on Computer

Vision (ECCV), 2014.

[7] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional

networks for semantic segmentation,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015.

[8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,

“Object detection with discriminatively trained partbased

models,” IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 2010.

[9] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun, “Overfeat: Integrated recognition, localization

and detection using convolutional networks,” in International

Conference on Learning Representations (ICLR), 2014.

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” in

Neural Information Processing Systems (NIPS), 2015.

[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman, “The PASCAL Visual Object Classes Challenge

2007 (VOC2007) Results,” 2007.

[12] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollar, and C. L. Zitnick, “Microsoft COCO: Com- ´

mon Objects in Context,” in European Conference on Computer

Vision (ECCV), 2014.

[13] S. Song and J. Xiao, “Deep sliding shapes for amodal 3d object

detection in rgb-d images,” arXiv:1511.02300, 2015.

[14] J. Zhu, X. Chen, and A. L. Yuille, “DeePM: A deep part-based

model for object detection and semantic part localization,”

arXiv:1511.07131, 2015.

[15] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation

via multi-task network cascades,” arXiv:1512.04412, 2015.

[16] J. Johnson, A. Karpathy, and L. Fei-Fei, “Densecap: Fully

convolutional localization networks for dense captioning,”

arXiv:1511.07571, 2015.

[17] D. Kislyuk, Y. Liu, D. Liu, E. Tzeng, and Y. Jing, “Human curation

and convnets: Powering item-to-item recommendations

on pinterest,” arXiv:1511.04003, 2015.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” arXiv:1512.03385, 2015.

[19] J. Hosang, R. Benenson, and B. Schiele, “How good are detection

proposals, really?” in British Machine Vision Conference

(BMVC), 2014.

[20] J. Hosang, R. Benenson, P. Dollar, and B. Schiele, “What makes ´

for effective detection proposals?” IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 2015.

[21] N. Chavali, H. Agrawal, A. Mahendru, and D. Batra,

“Object-Proposal Evaluation Protocol is ’Gameable’,” arXiv:

1505.05836, 2015.

[22] J. Carreira and C. Sminchisescu, “CPMC: Automatic object

segmentation using constrained parametric min-cuts,”

IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 2012.

[23] P. Arbelaez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik, ´

“Multiscale combinatorial grouping,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2014.

[24] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness

of image windows,” IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 2012.

[25] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks

for object detection,” in Neural Information Processing Systems

(NIPS), 2013.

[26] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable

object detection using deep neural networks,” in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2014.

[27] C. Szegedy, S. Reed, D. Erhan, and D. Anguelov, “Scalable,

high-quality object detection,” arXiv:1412.1441 (v1), 2015.

[28] P. O. Pinheiro, R. Collobert, and P. Dollar, “Learning to

segment object candidates,” in Neural Information Processing

Systems (NIPS), 2015.

[29] J. Dai, K. He, and J. Sun, “Convolutional feature masking

for joint object and stuff segmentation,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015.

[30] S. Ren, K. He, R. Girshick, X. Zhang, and J. Sun, “Object

detection networks on convolutional feature maps,”

arXiv:1504.06066, 2015.

[31] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and

Y. Bengio, “Attention-based models for speech recognition,”

in Neural Information Processing Systems (NIPS), 2015.

[32] M. D. Zeiler and R. Fergus, “Visualizing and understanding

convolutional neural networks,” in European Conference on

Computer Vision (ECCV), 2014.

[33] V. Nair and G. E. Hinton, “Rectified linear units improve

restricted boltzmann machines,” in International Conference on

Machine Learning (ICML), 2010.

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, and A. Rabinovich, “Going deeper with convolutions,”

in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015.

[35] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,

W. Hubbard, and L. D. Jackel, “Backpropagation applied to

handwritten zip code recognition,” Neural computation, 1989.

[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,

and L. Fei-Fei, “ImageNet Large Scale Visual Recognition

Challenge,” in International Journal of Computer Vision (IJCV),

2015.

[37] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classi-

fication with deep convolutional neural networks,” in Neural

Information Processing Systems (NIPS), 2012.

[38] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional

architecture for fast feature embedding,” arXiv:1408.5093, 2014.

[39] K. Lenc and A. Vedaldi, “R-CNN minus R,” in British Machine

Vision Conference (BMVC), 2015.



3、《Mask R-CNN》


Kaiming He Georgia Gkioxari Piotr Dollar Ross Girshick ´

Facebook AI Research (FAIR)


References

[1] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2D

human pose estimation: New benchmark and state of the art

analysis. In CVPR, 2014. 8

[2] P. Arbelaez, J. Pont-Tuset, J. T. Barron, F. Marques, and ´

J. Malik. Multiscale combinatorial grouping. In CVPR,

2014. 2

[3] A. Arnab and P. H. Torr. Pixelwise instance segmentation

with a dynamically instantiated network. In CVPR, 2017. 3,

9

[4] M. Bai and R. Urtasun. Deep watershed transform for instance

segmentation. In CVPR, 2017. 3, 9

[5] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Insideoutside

net: Detecting objects in context with skip pooling

and recurrent neural networks. In CVPR, 2016. 5

[6] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multiperson

2d pose estimation using part affinity fields. In CVPR,

2017. 7, 8

[7] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

Cityscapes dataset for semantic urban scene understanding.

In CVPR, 2016. 9

[8] J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive

fully convolutional networks. In ECCV, 2016. 2

[9] J. Dai, K. He, and J. Sun. Convolutional feature masking for

joint object and stuff segmentation. In CVPR, 2015. 2

[10] J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation

via multi-task network cascades. In CVPR, 2016. 2, 3,

4, 5, 6

[11] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection via

region-based fully convolutional networks. In NIPS, 2016. 2

[12] R. Girshick. Fast R-CNN. In ICCV, 2015. 1, 2, 3, 4, 6

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature

hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 2, 3

[14] R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable

part models are convolutional neural networks. In CVPR,

2015. 4

[15] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik. Simul- ´

taneous detection and segmentation. In ECCV. 2014. 2

[16] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik. Hyper- ´

columns for object segmentation and fine-grained localization.

In CVPR, 2015. 2

[17] Z. Hayder, X. He, and M. Salzmann. Shape-aware instance

segmentation. In CVPR, 2017. 9

[18] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. In

ECCV. 2014. 1, 2

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 2, 4, 7, 10

[20] J. Hosang, R. Benenson, P. Dollar, and B. Schiele. What ´

makes for effective detection proposals? PAMI, 2015. 2

[21] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, et al.

Speed/accuracy trade-offs for modern convolutional object

detectors. In CVPR, 2017. 2, 3, 4, 6, 7

[22] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu. Spatial transformer networks. In

NIPS, 2015. 4

[23] A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and

C. Rother. Instancecut: from edges to instances with multicut.

In CVPR, 2017. 3, 9

[24] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification

with deep convolutional neural networks. In NIPS,

2012. 2

[25] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backpropagation

applied to handwritten zip code recognition. Neural computation,

1989. 2

[26] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully convolutional

instance-aware semantic segmentation. In CVPR, 2017. 2,

3, 5, 6

[27] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and ´

S. Belongie. Feature pyramid networks for object detection.

In CVPR, 2017. 2, 4, 5, 7

[28] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollar, and C. L. Zitnick. Microsoft COCO: Com- ´

mon objects in context. In ECCV, 2014. 2, 5

[29] S. Liu, J. Jia, S. Fidler, and R. Urtasun. SGN: Sequential

grouping networks for instance segmentation. In ICCV,

2017. 3, 9

[30] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 1, 3, 6

[31] V. Nair and G. E. Hinton. Rectified linear units improve restricted

boltzmann machines. In ICML, 2010. 4

[32] G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson,

C. Bregler, and K. Murphy. Towards accurate multiperson

pose estimation in the wild. In CVPR, 2017. 8

[33] P. O. Pinheiro, R. Collobert, and P. Dollar. Learning to segment

object candidates. In NIPS, 2015. 2, 3

[34] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollar. Learn- ´

ing to refine object segments. In ECCV, 2016. 2, 3

[35] I. Radosavovic, P. Dollar, R. Girshick, G. Gkioxari, and ´

K. He. Data distillation: Towards omni-supervised learning.

arXiv:1712.04440, 2017. 10

[36] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards

real-time object detection with region proposal networks.

In NIPS, 2015. 1, 2, 3, 4, 7

[37] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards

real-time object detection with region proposal networks.

In TPAMI, 2017. 10

[38] A. Shrivastava, A. Gupta, and R. Girshick. Training regionbased

object detectors with online hard example mining. In

CVPR, 2016. 2, 5

[39] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta. Beyond

skip connections: Top-down modulation for object detection.

arXiv:1612.06851, 2016. 4, 7

[40] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting

unreasonable effectiveness of data in deep learning era. In

ICCV, 2017. 10

[41] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,

inception-resnet and the impact of residual connections on

learning. In ICLR Workshop, 2016. 7

[42] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.

Smeulders. Selective search for object recognition. IJCV,

2013. 2

[43] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural

networks. arXiv:1711.07971, 2017. 10

[44] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional

pose machines. In CVPR, 2016. 8

[45] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated ´

residual transformations for deep neural networks. In CVPR,

2017. 4, 10


 

论文导出文献引用正确格式的几个方法

1、使用百度学术

image.png

2、Google维基百科

image.png

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
BlackHat2017热点之DefPloreX---大规模网络犯罪取证的机器学习工具
本文讲的是BlackHat2017热点之DefPloreX---大规模网络犯罪取证的机器学习工具,Black Hat USA 2017是在通过四天(7月22日-7月25日)的技术培训后才举办的会议,为期两天的会议是在7月26日-7月27日召开的。
1660 0
《Web安全之机器学习入门》一 1.1 人工智能、机器学习与深度学习
本节书摘来自华章出版社《Web安全之机器学习入门》一 书中的第1章,第1.1节,作者:刘焱,更多章节内容可以访问云栖社区“华章计算机”公众号查看。
2012 0
git学习------>写给 Git 初学者的7个建议
PS:本文转载于(http://blog.jobbole.com/50603/),本文由 伯乐在线 - 吴鹏煜 翻译。 英文出处:(http://sixrevisions.com/web-development/git-tips/) 当我刚刚开始使用Git的版本控制时,我根本不确定我付出那么多时间是不是会得到回报。
1266 0
改善C#程序的157建议——建议42学习笔记:使用泛型参数兼容泛型接口的不可变性。
改善C#程序的157建议——建议42学习笔记:使用泛型参数兼容泛型接口的不可变性。
15 0
【NIPS2017现场+数据也疯狂】最佳论文大奖公布,算法关注度超越深度学习排第一
第三十一届NIPS正式开幕!新智元编辑部结合“V直播”,为你带来现场报道!本届会议有8500人注册,3240篇提交论文,覆盖156个子领域,有7844位不同的作者,2093位专家评审,9747条评审意见……辉煌的数字,必将成就难忘的会议。本文后附3篇最佳论文及1篇经典论文解读。
2989 0
改善C#程序157个建议——建议37学习笔记:使用Lambda表达式代替方法和匿名方法
改善C#程序157个建议——建议37学习笔记:使用Lambda表达式代替方法和匿名方法
13 0
《Web安全之机器学习入门》一 1.2 人工智能的发展
本节书摘来自华章出版社《Web安全之机器学习入门》一 书中的第1章,第1.2节,作者:刘焱,更多章节内容可以访问云栖社区“华章计算机”公众号查看。
1534 0
基于多任务学习和负反馈的深度召回模型
召回结果的好坏对整个推荐结果有着至关重要的影响,最近的一系列实践和研究表明,基于行为序列的深度学习推荐模型搭配高性能的近似检索算法可以实现既准又快的召回性能;与此同时,用户在天猫精灵上还可以进行实时指令操控(歌名点播:“播放七里香”、风格流派推荐点播:“来点摇滚”、主动切歌:“下一首”等),如何利用这些丰富的反馈信息改进召回模型的性能,他们是怎么做的呢?
1095 0
ML/DL:关于机器学习、深度学习算法模型的选择
ML/DL:关于机器学习、深度学习算法模型的选择
13 0
+关注
一个处女座的程序猿
国内互联网圈知名博主、人工智能领域优秀创作者,全球最大中文IT社区博客专家、CSDN开发者联盟生态成员、中国开源社区专家、华为云社区专家、51CTO社区专家、Python社区专家等,曾受邀采访和评审十多次。仅在国内的CSDN平台,博客文章浏览量超过2500万,拥有超过57万的粉丝。
1701
文章
0
问答
来源圈子
更多
文章排行榜
最热
最新
相关电子书
更多
文娱运维技术
立即下载
《SaaS模式云原生数据仓库应用场景实践》
立即下载
《看见新力量:二》电子书
立即下载