DL:LinearNN(numpy自定义的) solve XOR problem

简介: DL:LinearNN(numpy自定义的) solve XOR problem

输出结果

image.png




核心代码


#BP solve XOR Problem

import numpy as np

#输入数据,第一列的数字1表示偏置

X = np.array ([[1, 0, 0],

              [1, 0, 1],

              [1, 1, 0],

              [1, 1, 1]])

#标签

Y = np.array ([[0, 1, 1, 0]]) #两个中括号代表二维。分别对应00、01、10、11

#权值初始化,3行4列,取值范围[-1,1]

V = np.random.randn(3,4)*2-1

W = np.random.randn(4,1)*2-1

print (V)

print (W)

#设置学习率

lr = 0.11

           

def update():  #更新权值的函数

   global X,Y,W,V,lr   #当自定义的函数需要调用外部的参数时,需要利用global进行声明为全局变量

   L1=sigmoid(np.dot(X,V))  #隐藏层输出4*4

   L2=sigmoid(np.dot(L1,W)) #输出层输出4*1

   L2_delta=(Y.T-L2)*dsigmoid(L2)   #Y.T就是Y的转置

   L1_delta=L2_delta.dot(W.T)*dsigmoid(L1)

 

   W_C=lr*L1.T.dot(L2_delta)

   V_C=lr*X.T.dot(L1_delta)

   W=W+W_C

   V=V+V_C

for i in range(20000):

   update() #更新权值

   if i%500==0:

       L1=sigmoid(np.dot(X,V))  #隐藏层输出4*4

       L2=sigmoid(np.dot(L1,W)) #输出层输出4*1

       print("error:",np.mean(np.abs(Y.T-L2)))

     

L1=sigmoid(np.dot(X,V))  #隐藏层输出4*4

L2=sigmoid(np.dot(L1,W)) #输出层输出4*1

print(L2)

def judge(x):

   if x>=0.5:

       return 1

   else:

       return 0

for i in map(judge,L2):

   print(i)


LinearNN使用案例


1、LinearNN简单案例

https://imgconvert.csdnimg.cn/aHR0cHM6Ly9pbWFnZXMyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvMTMxMzQ3NS8yMDE4MDYvMTMxMzQ3NS0yMDE4MDYyNTE1NDcwNTg3Mi01NDA3MDQ0NzEuZ2lm

2、LinearNN solve  XOR problem

当lr=0.3时,相对比较大,每一个步长比较大,所以会在坑底部(最小值)两端进行跳动,然后训练到一定轮数,再改lr=0.03即可看到更好的情况。

image.png

image.png





相关文章
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
76 0
|
3月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
58 0
|
4月前
|
机器学习/深度学习 数据可视化 搜索推荐
Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。
【7月更文挑战第5天】Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。流程包括数据获取、预处理、探索、模型选择、评估与优化,以及结果可视化。示例展示了用户行为、话题趋势和用户画像分析。Python的丰富生态使得社交媒体洞察变得高效。通过学习和实践,可以提升社交媒体分析能力。
83 1
|
16天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
26 3
|
17天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
33 2
|
2月前
|
机器学习/深度学习 算法 数据可视化
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
特征工程是机器学习流程中的关键步骤,通过将原始数据转换为更具意义的特征,增强模型对数据关系的理解能力。本文重点介绍处理数值变量的高级特征工程技术,包括归一化、多项式特征、FunctionTransformer、KBinsDiscretizer、对数变换、PowerTransformer、QuantileTransformer和PCA,旨在提升模型性能。这些技术能够揭示数据中的潜在模式、优化变量表示,并应对数据分布和内在特性带来的挑战,从而提高模型的稳健性和泛化能力。每种技术都有其独特优势,适用于不同类型的数据和问题。通过实验和验证选择最适合的变换方法至关重要。
46 5
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
|
1月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
69 10
|
1月前
|
索引 Python
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧1
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
87 4
|
3月前
|
机器学习/深度学习 存储 算法
NumPy 与 SciPy:Python 科学计算库的比较
【8月更文挑战第30天】
152 5
|
3月前
|
存储 缓存 C语言