DL之AlexNet:AlexNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之AlexNet:AlexNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

AlexNet简介


     作者:AlexKrizhevsky、GeoffreyE.Hinton(多伦多大学)。AlexNet以巨大的优势(领先第二名10%的成绩),在ILSVRC2012图像分类竟赛第一名,将top-5 错误率原来的25%降至16.4%。标志着深度学习革命的开始,掀起了深度卷积神经网络在各个领域的研究热潮。


1、采用的数据集

ImageNet ILSVRC-2010数据集:1.2 million图片1000类别 。

2、论文

2012《ImageNet Classification with Deep Convolutional  Neural Networks》

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

Imagenetclassification with deep convolutional neural networks. NIPS 2012.

论文地址:https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



AlexNet架构详解


DL之AlexNet:AlexNet算法的架构详解、损失函数、网络训练和学习之详细攻略



1、整体架构


网络配置:卷积神经网络网络架构:5个卷积层和3个全连接层。双CPU并行计算,在第三个卷积层和全连接层做信息交互。

网络规模:总共60 million个参数;650,000个神经元。在两个NVIDIA GTX 580 3GB GPU上训练需要5~6天。

架构组件与技巧:ReLU、Dropout、LRN(Local Response Normalization) 、Overlapping max pooling 、数据增强 、双CPU训练

2、实验结果


ILSVRC-2010: top-1和top-5错误率分别为37.5%和17.0%

ILSVRC-2012: top-5错误率分别为16.4%

在整个ImageNet 2011数据集上预训练后的结果:ILSVRC-2012,top-5猎误为15.3%

(1)、ILSVRC-2010训练集上的结果比较


            可知,远远好于传统手工提取的方法。


image.png


(2)、ILSVRC-2012验证集和测试集上的错误率比较


         最后一个7个卷积层的网络错误率达到15.3%。


image.png


              带星号*的是在整个更大的ImageNet 2011数据集(15M图像, 22K类别)上预训练后再微调的结果。



3、AlexNet网络所需算力


(1)、AlexNet的forward处理中各层的时间比:左边是使用GPU的情况,右边是使用CPU的情况。图中的“conv”对应卷积层,“pool”对应池化层,“fc”对应全连接层,“norm”对应正规化层。

image.png



图片来源:Jia Yangqing(2014): Learning Semantic Image Representations at a Large Scale. PhD thesis, EECS Department, University of California, Berkeley, May 2014.


(2)、使用CPU 的“16-core Xeon CPU”和GPU的 “Titan 系列”进行AlexNet的学习时分别所需的时间

image.png



图片来源:NVIDIA blog “NVIDIA Propels Deep Learning with TITAN X, New DIGITS Training System and DevBox”.





4、8个ILSVRC-2010测试图像和模型认为最可能的前5个标签


image.png


    正确的标签写在每个图像下面,分配给正确标签的概率也用红色条显示(如果恰好位于前5个)。


image.png


    第一列是5个ILSVRC-2010的测试图像;其余的列显示了6个最近的训练图像(即在最后隐藏层生成的特征向量和测试图像的特征向量具有最小的欧几里得距离)。




image.png


image.png


AlexNet算法的案例应用


后期更新……


 

相关文章
|
14天前
|
运维 NoSQL Java
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
54 4
|
2月前
|
算法 Java 数据安全/隐私保护
国密加密算法简介
国密指国家密码局认定的国产密码算法,主要包括SM1、SM2、SM3、SM4等,并持续完善。SM1是对称加密算法,加密强度与AES相当,需加密芯片支持;SM2是非对称加密,基于ECC算法,签名和密钥生成速度优于RSA;SM3为杂凑算法,安全性高于MD5;SM4为对称加密算法,用于无线局域网标准。本文提供使用Java和SpringBoot实现SM2和SM4加密的示例代码及依赖配置。更多国密算法标准可参考国家密码局官网。
174 1
|
1月前
|
存储 算法 安全
ArrayList简介及使用全方位手把手教学(带源码),用ArrayList实现洗牌算法,3个人轮流拿牌(带全部源码)
文章全面介绍了Java中ArrayList的使用方法,包括其构造方法、常见操作、遍历方式、扩容机制,并展示了如何使用ArrayList实现洗牌算法的实例。
15 0
|
2月前
|
缓存 负载均衡 数据管理
深入探索微服务架构的核心要素与实践策略在当今软件开发领域,微服务架构以其独特的优势和灵活性,已成为众多企业和开发者的首选。本文将深入探讨微服务架构的核心要素,包括服务拆分、通信机制、数据管理等,并结合实际案例分析其在不同场景下的应用策略,旨在为读者提供一套全面、深入的微服务架构实践指南。**
**微服务架构作为软件开发领域的热门话题,正引领着一场技术革新。本文从微服务架构的核心要素出发,详细阐述了服务拆分的原则与方法、通信机制的选择与优化、数据管理的策略与挑战等内容。同时,结合具体案例,分析了微服务架构在不同场景下的应用策略,为读者提供了实用的指导和建议。
|
3月前
|
前端开发 大数据 数据库
🔥大数据洪流下的决战:JSF 表格组件如何做到毫秒级响应?揭秘背后的性能魔法!💪
【8月更文挑战第31天】在 Web 应用中,表格组件常用于展示和操作数据,但在大数据量下性能会成瓶颈。本文介绍在 JavaServer Faces(JSF)中优化表格组件的方法,包括数据处理、分页及懒加载等技术。通过后端分页或懒加载按需加载数据,减少不必要的数据加载和优化数据库查询,并利用缓存机制减少数据库访问次数,从而提高表格组件的响应速度和整体性能。掌握这些最佳实践对开发高性能 JSF 应用至关重要。
70 0
|
3月前
|
存储 设计模式 运维
Angular遇上Azure Functions:探索无服务器架构下的开发实践——从在线投票系统案例深入分析前端与后端的协同工作
【8月更文挑战第31天】在现代软件开发中,无服务器架构因可扩展性和成本效益而备受青睐。本文通过构建一个在线投票应用,介绍如何结合Angular前端框架与Azure Functions后端服务,快速搭建高效、可扩展的应用系统。Angular提供响应式编程和组件化能力,适合构建动态用户界面;Azure Functions则简化了后端逻辑处理与数据存储。通过具体示例代码,详细展示了从设置Azure Functions到整合Angular前端的全过程,帮助开发者轻松上手无服务器应用开发。
29 0
|
3月前
|
算法
【算法】贪心算法简介
【算法】贪心算法简介
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。