Interview:人工智能岗位面试—人工智能岗位求职之机器学习算法工程师必备知识框架结构图

简介: Interview:人工智能岗位面试—人工智能岗位求职之机器学习算法工程师必备知识框架结构图

机器学习算法工程师思维导图

1、思维导图01

image.png

相关文章
|
4月前
|
机器学习/深度学习 算法
【机器学习】过拟合和欠拟合怎么判断,如何解决?(面试回答)
本文介绍了如何通过观察训练误差和验证误差来判断模型是否出现过拟合或欠拟合,并提供了相应的解决方案,包括增加数据、调整模型复杂度、使用正则化技术等。
448 1
|
1月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
86 2
|
2月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
4月前
|
机器学习/深度学习 自然语言处理
【机器学习】如何进行中文命名实体识别?(面试回答)
中文命名实体识别的基本概念、分类、识别思想、实体标注方法以及常见的识别方法,包括基于规则、基于统计和基于深度学习的方法。
60 1
【机器学习】如何进行中文命名实体识别?(面试回答)
|
4月前
|
机器学习/深度学习
【机器学习】如何判断函数凸或非凸?(面试回答)
文章介绍了如何判断函数是凸函数还是非凸函数,包括凸函数的定义、几何意义、判定方法(一元函数通过二阶导数判断,多元函数通过Hessian矩阵的正定性判断),以及凸优化的概念和一些经典的凸优化问题。
276 1
【机器学习】如何判断函数凸或非凸?(面试回答)
|
4月前
|
网络协议 网络架构
OSPF邻居关系建立失败?揭秘网络工程师面试中最常见的难题,这些关键步骤你掌握了吗?网络配置的陷阱就在这里!
【8月更文挑战第19天】OSPF是网络工程中确保数据高效传输的关键协议。但常遇难题:路由器间无法建立OSPF邻居关系,影响网络稳定并成为面试热点。解决此问题需检查网络连通性(如使用`ping`),确认OSPF区域配置一致(通过`show running-config`),校准Hello与Dead计时器(配置`hello`和`dead`命令),及核查IP地址和子网掩码正确无误(使用`ip address`)。系统排查上述因素可确保OSPF稳定运行。
85 2
|
4月前
|
机器学习/深度学习 算法 数据中心
【机器学习】面试问答:PCA算法介绍?PCA算法过程?PCA为什么要中心化处理?PCA为什么要做正交变化?PCA与线性判别分析LDA降维的区别?
本文介绍了主成分分析(PCA)算法,包括PCA的基本概念、算法过程、中心化处理的必要性、正交变换的目的,以及PCA与线性判别分析(LDA)在降维上的区别。
108 4
|
4月前
|
Go API 数据库
[go 面试] 分布式事务框架选择与实践
[go 面试] 分布式事务框架选择与实践
|
4月前
|
机器学习/深度学习 算法 Python
【机器学习】面试问答:决策树如何进行剪枝?剪枝的方法有哪些?
文章讨论了决策树的剪枝技术,包括预剪枝和后剪枝的概念、方法以及各自的优缺点。
67 2
|
4月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
86 3