Dataset之Pascal:Pascal竞赛及其Pascal VOC(VOC 2012、VOC 2007) 数据集的简介、下载、使用方法详细攻略(二)

简介: Dataset之Pascal:Pascal竞赛及其Pascal VOC(VOC 2012、VOC 2007) 数据集的简介、下载、使用方法详细攻略

Pascal VOC 数据集的简介


      PASCAL VOC挑战在2005年至2012年间展开。 目标检测技术的基准之一。该数据集中有20个分类。该数据集包含11530张用于训练和验证的图像, 其中感兴趣区域有27450个标定。

      PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge。该挑战的主要目的是识别真实场景中一些类别的物体。在该挑战中,这是一个监督学习的问题,训练集以带标签的图片的形式给出。

      Pascal VOC(2005~2012)竞赛的目标主要是进行图像的目标识别,其提供的数据集包含20类的物体。每张图片都有标注,标注的物体包括人、动物(如猫、狗、岛等)、交通工具(如车、船飞机等)、家具(如椅子、桌子、沙发等)在内的20个类别。每个图像平均有2.4个目标。所有的标注图片都有Detection需要的label, 但只有部分数据有Segmentation Label。



1、VOC2007和VOC2012数据集


1、VOC2007


      VOC2007:中包含9963张标注过的图片, 由train/val/test三部分组成, 共标注出24,640个物体。 VOC2007的test数据label已经公布, 之后的没有公布(只有图片,没有label)。



2、VOC2012


      VOC2012:VOC2012数据集是VOC2007数据集的升级版,一共有11530张图片。对于检测任务,VOC2012的trainval/test包含08-11年的所有对应图片。 trainval有11540张图片共27450个物体。 对于分割任务, VOC2012的trainval包含07-11年的所有对应图片, test只包含08-11。trainval有 2913张图片共6929个物体。    

     VOC2012数据集分为20类,包括背景为21类,分别如下:


人:人

动物:鸟、猫、牛、狗、马、羊

车辆:飞机、自行车、船、巴士、汽车、摩托车、火车

室内:瓶、椅子、餐桌、盆栽植物、沙发、电视/监视器

       这些物体包括20类:  

image.png



Person: person

Animal: bird, cat, cow, dog, horse, sheep

Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor



Pascal VOC 数据集的下载

1、VOC2012数据集下载地址:http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar


(1)、将其转换为tfrecord格式:为了不影响代码的结构,还是在原来的object_detection 文件夹中, 再新建一个voc 文件夹,并将下载的数据集压缩包复制至voc/中。解压后,就得到一个VOCdevkit 文件夹,最终的文件夹结构应该为



Pascal VOC 数据集的使用方法


后期更新……







 


相关文章
|
算法 数据库 计算机视觉
Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略
Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略
|
机器学习/深度学习 算法 PyTorch
【PyTorch实战演练】Fast R-CNN中的RoI(Region of Interest)池化详解
【PyTorch实战演练】Fast R-CNN中的RoI(Region of Interest)池化详解
432 1
|
机器学习/深度学习 编解码 算法
MMDetection系列 | 4. MMDetection模型代码训练及测试过程的详细解析
MMDetection系列 | 4. MMDetection模型代码训练及测试过程的详细解析
1169 0
MMDetection系列 | 4. MMDetection模型代码训练及测试过程的详细解析
|
机器学习/深度学习 计算机视觉 异构计算
Darknet53详细原理(含torch版源码)
Darknet53详细原理(含torch版源码)—— cifar10
936 0
Darknet53详细原理(含torch版源码)
|
12月前
|
机器学习/深度学习 计算机视觉
TPAMI 2024:计算机视觉中基于图神经网络和图Transformers的方法和最新进展
【10月更文挑战第3天】近年来,图神经网络(GNNs)和图Transformers在计算机视觉领域取得显著进展,广泛应用于图像识别、目标检测和场景理解等任务。TPAMI 2024上的一篇综述文章全面回顾了它们在2D自然图像、视频、3D数据、视觉与语言结合及医学图像中的应用,并深入分析了其基本原理、优势与挑战。GNNs通过消息传递捕捉非欧式结构,图Transformers则结合Transformer模型提升表达能力。尽管存在图结构构建复杂和计算成本高等挑战,但这些技术仍展现出巨大潜力。论文详细内容见:https://arxiv.org/abs/2209.13232。
580 3
|
机器学习/深度学习 机器人 数据库
FoundationPose复现及Realsense应用
文章概述了FoundationPose项目,一个由Nvidia开发的用于新对象6D姿态估计和跟踪的统一模型,支持模型基础和无模型设置,通过合成数据和大型语言模型实现强泛化能力,并提供了复现和应用的详细步骤。
1232 0
FoundationPose复现及Realsense应用
|
存储 缓存 并行计算
Transformers 4.37 中文文档(九十九)(8)
Transformers 4.37 中文文档(九十九)
389 0
|
机器人 计算机视觉
检测一切YOLO-World的几个实用使用技巧,助力精准高效目标检测任务!
检测一切YOLO-World的几个实用使用技巧,助力精准高效目标检测任务!
|
机器学习/深度学习 数据挖掘 测试技术
DETR即插即用 | RefineBox进一步细化DETR家族的检测框,无痛涨点
DETR即插即用 | RefineBox进一步细化DETR家族的检测框,无痛涨点
669 1
|
机器学习/深度学习 存储 计算机视觉
基于YOLOv8深度学习的野外火焰烟雾检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测(2)
基于YOLOv8深度学习的野外火焰烟雾检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测