TF之LSTM:利用基于顺序的LSTM回归算法对DIY数据集sin曲线(蓝虚)预测cos(红实)(TensorBoard可视化)

简介: TF之LSTM:利用基于顺序的LSTM回归算法对DIY数据集sin曲线(蓝虚)预测cos(红实)(TensorBoard可视化)

输出结果

image.png

代码设计

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

BATCH_START = 0    

TIME_STEPS = 20    

BATCH_SIZE = 50    

INPUT_SIZE = 1    

OUTPUT_SIZE = 1    

CELL_SIZE = 10    

LR = 0.006        

BATCH_START_TEST = 0

def get_batch():  

   global BATCH_START, TIME_STEPS

   xs = np.arange(BATCH_START, BATCH_START+TIME_STEPS*BATCH_SIZE).reshape((BATCH_SIZE, TIME_STEPS)) / (10*np.pi)

   seq = np.sin(xs)

   res = np.cos(xs)

   BATCH_START += TIME_STEPS

   return [seq[:, :, np.newaxis], res[:, :, np.newaxis], xs]

class LSTMRNN(object):  

   def __init__(self, n_steps, input_size, output_size, cell_size, batch_size):

       self.n_steps = n_steps

       self.input_size = input_size

       self.output_size = output_size

       self.cell_size = cell_size

       self.batch_size = batch_size

       with tf.name_scope('inputs'):

           self.xs = tf.placeholder(tf.float32, [None, n_steps, input_size], name='xs')

           self.ys = tf.placeholder(tf.float32, [None, n_steps, output_size], name='ys')

       with tf.variable_scope('in_hidden'):

           self.add_input_layer()

       with tf.variable_scope('LSTM_cell'):

           self.add_cell()

       with tf.variable_scope('out_hidden'):

           self.add_output_layer()

       with tf.name_scope('cost'):

           self.compute_cost()          

       with tf.name_scope('train'):

           self.train_op = tf.train.AdamOptimizer(LR).minimize(self.cost)

         

   def add_input_layer(self,):

       l_in_x = tf.reshape(self.xs, [-1, self.input_size], name='2_2D')

       Ws_in = self._weight_variable([self.input_size, self.cell_size])

 

       bs_in = self._bias_variable([self.cell_size,])

       with tf.name_scope('Wx_plus_b'):

           l_in_y = tf.matmul(l_in_x, Ws_in) + bs_in

       self.l_in_y = tf.reshape(l_in_y, [-1, self.n_steps, self.cell_size], name='2_3D')

     

   def add_cell(self):        

       lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(self.cell_size, forget_bias=1.0, state_is_tuple=True)

       with tf.name_scope('initial_state'):  

       self.cell_init_state = lstm_cell.zero_state(self.batch_size, dtype=tf.float32)

       self.cell_outputs, self.cell_final_state = tf.nn.dynamic_rnn(  

           lstm_cell, self.l_in_y, initial_state=self.cell_init_state, time_major=False)

         

   def add_output_layer(self):

       l_out_x = tf.reshape(self.cell_outputs, [-1, self.cell_size], name='2_2D')

       Ws_out = self._weight_variable([self.cell_size, self.output_size])

       bs_out = self._bias_variable([self.output_size, ])

       # shape = (batch * steps, output_size)

       with tf.name_scope('Wx_plus_b'):

           self.pred = tf.matmul(l_out_x, Ws_out) + bs_out

   def compute_cost(self):  

       losses = tf.contrib.legacy_seq2seq.sequence_loss_by_example(

           [tf.reshape(self.pred, [-1], name='reshape_pred')],

           [tf.reshape(self.ys, [-1], name='reshape_target')],

           [tf.ones([self.batch_size * self.n_steps], dtype=tf.float32)],

           average_across_timesteps=True,

           softmax_loss_function=self.ms_error,

           name='losses'

       )

       with tf.name_scope('average_cost'):

           self.cost = tf.div(

               tf.reduce_sum(losses, name='losses_sum'),

               self.batch_size,

               name='average_cost')

           tf.summary.scalar('cost', self.cost)

   def ms_error(self, y_target, y_pre):  

       return tf.square(tf.sub( y_target, y_pre))

   def _weight_variable(self, shape, name='weights'):

       initializer = tf.random_normal_initializer(mean=0., stddev=1.,)

       return tf.get_variable(shape=shape, initializer=initializer, name=name)

   def _bias_variable(self, shape, name='biases'):

       initializer = tf.constant_initializer(0.1)

       return tf.get_variable(name=name, shape=shape, initializer=initializer)

 

if __name__ == '__main__':  

   model = LSTMRNN(TIME_STEPS, INPUT_SIZE, OUTPUT_SIZE, CELL_SIZE, BATCH_SIZE)

   sess = tf.Session()

   merged=tf.summary.merge_all()

   writer=tf.summary.FileWriter("niu0127/logs0127",sess.graph)

   sess.run(tf.global_variables_initializer())


相关文章
|
6月前
|
存储 安全 算法
|
6月前
|
机器学习/深度学习 算法 数据库
KNN和SVM实现对LFW人像图像数据集的分类应用
KNN和SVM实现对LFW人像图像数据集的分类应用
101 0
|
6月前
|
机器学习/深度学习 算法 数据挖掘
【MATLAB】tvf_emd_ MFE_SVM_LSTM 神经网络时序预测算法
【MATLAB】tvf_emd_ MFE_SVM_LSTM 神经网络时序预测算法
83 2
|
5月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
|
3月前
|
数据采集 机器学习/深度学习 算法
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
|
5月前
|
机器学习/深度学习 存储 人工智能
算法金 | LSTM 原作者带队,一个强大的算法模型杀回来了
**摘要:** 本文介绍了LSTM(长短期记忆网络)的发展背景和重要性,以及其创始人Sepp Hochreiter新推出的xLSTM。LSTM是为解决传统RNN长期依赖问题而设计的,广泛应用于NLP和时间序列预测。文章详细阐述了LSTM的基本概念、核心原理、实现方法和实际应用案例,包括文本生成和时间序列预测。此外,还讨论了LSTM与Transformer的竞争格局。最后,鼓励读者深入学习和探索AI领域。
57 7
算法金 | LSTM 原作者带队,一个强大的算法模型杀回来了
|
5月前
|
算法 安全 Java
深入解析ECC(椭圆曲线密码学)加解密算法
深入解析ECC(椭圆曲线密码学)加解密算法
深入解析ECC(椭圆曲线密码学)加解密算法
|
5月前
|
存储 算法 Java
Java数据结构与算法:用于高效地存储和检索字符串数据集
Java数据结构与算法:用于高效地存储和检索字符串数据集
|
5月前
|
机器学习/深度学习 自然语言处理 前端开发
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
124 0
|
6月前
|
机器学习/深度学习 分布式计算 并行计算
【机器学习】怎样在非常大的数据集上执行K-means算法?
【5月更文挑战第13天】【机器学习】怎样在非常大的数据集上执行K-means算法?

热门文章

最新文章