ML之SVM:SVM算法的简介、应用、经典案例之详细攻略(一)

简介: ML之SVM:SVM算法的简介、应用、经典案例之详细攻略

目录


SVM算法的简介


1、SVM模型分类—线性可分、线性、非线性


2、SVM的决策边界


3、SVM中的核函数


4、SVM算法推导


1.1、SVM转为对偶问题的求解—SMO算法思


5、SVM中“损失+惩罚”框架的灵活性


6、SVM的损失函数分析


SVM的应用——解决的问题类型


1、SVM用作分类


1.1、SVM与二分类


1.2、SVM与多分类


2、SVM用作回归


SVM的经典案例



SVM算法的简介


       支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类(binary classification)的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。

       SVM的基本思想是:找到集合边缘上的若干数据(称为支持向量(Support Vector)),用这些点找出一个平面(称为决策面),使得支持向量到该平面的距离最大。



1、SVM模型分类—线性可分、线性、非线性


       由简至繁的SVM模型包括:

当训练样本线性可分时,通过硬间隔最大化,学习一个线性可分支持向量机;

当训练样本近似线性可分时,通过软间隔最大化,学习一个线性支持向量机;

当训练样本线性不可分时,通过核技巧和软间隔最大化,学习一个非线性支持向量机;


线性可分数据

image.png

image.png

image.png

image.png



线性不可分数据

image.png


非线性数据

 image.png


相关文章
|
4月前
|
数据采集 机器学习/深度学习 算法
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
73 0
|
28天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
1月前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
2月前
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
63 1
|
2月前
|
算法 数据可视化 新制造
Threejs路径规划_基于A*算法案例完整版
这篇文章详细介绍了如何在Three.js中完整实现基于A*算法的路径规划案例,包括网格构建、路径寻找算法的实现以及路径可视化展示等方面的内容。
91 0
Threejs路径规划_基于A*算法案例完整版
|
3月前
|
算法 Java 数据安全/隐私保护
国密加密算法简介
国密指国家密码局认定的国产密码算法,主要包括SM1、SM2、SM3、SM4等,并持续完善。SM1是对称加密算法,加密强度与AES相当,需加密芯片支持;SM2是非对称加密,基于ECC算法,签名和密钥生成速度优于RSA;SM3为杂凑算法,安全性高于MD5;SM4为对称加密算法,用于无线局域网标准。本文提供使用Java和SpringBoot实现SM2和SM4加密的示例代码及依赖配置。更多国密算法标准可参考国家密码局官网。
348 1
|
3月前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
58 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
2月前
|
存储 算法 机器人
Threejs路径规划_基于A*算法案例V2
这篇文章详细介绍了如何在Three.js中使用A*算法进行高效的路径规划,并通过三维物理电路的实例演示了路径计算和优化的过程。
89 0

热门文章

最新文章