医生开错药?AI来提醒!谷歌和UCSF合作开发机器学习模型,高性能预警潜在危险

简介: 医生开错药?AI来提醒!谷歌和UCSF合作开发机器学习模型,高性能预警潜在危险

据统计,每年死于用药失误的人数比死于工伤的人数还要多。

尽管没有医生或者护士愿意犯错,2%的住院病人经历过可能危及生命或造成永久伤害的药物相关事件,而这些都是由于原本可以避免的失误导致的。

用药失误导致医疗失误的因素很多,往往都是由于不完善的系统、工具、流程或工作条件。如今,这一情况有望被AI解决

谷歌健康的机器学习专家与加州大学旧金山分校(UCSF)计算与健康科学部门联合发表了一项新的研究,描述了研究人员建立的一个机器学习模型,该模型可以使用病人的电子健康记录(EHR)作为输入,预测医生正常应该采用的用药模式,从而在实际用药与预测结果不一致时提醒医生

该研究发表在《临床药理学和治疗学》杂志上。

论文地址:

https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.1826

10万病例的300万份处方,训练两种机器学习模型

用于模型训练的数据集包括来自超过10万住院病人的大约300万份药物处方

研究人员使用了回顾性的电子健康记录数据,所有的研究都是使用开源的快速医疗互操作资源(FHIR)格式完成的,之前有研究已经证明使用这种格式使医疗数据对于机器学习更加有效。

同时数据集并不局限于特定的疾病或治疗领域,这使得机器学习任务更具挑战性,但也有助于确保模型可以识别更多种类的情况——例如,脱水患者需要不同于创伤性损伤患者的药物治疗。


为了保护隐私,这些数据已经经过了随机移动日期和删除记录个人隐私数据的处理,包括姓名、地址、联系方式、记录号码、医生姓名、图像等等。

根据这些数据,研究人员训练了两种机器学习模型:一种是长时短记忆(LSTM)递归神经网络模型,另一个是常用于临床研究的规则化、时间序列的逻辑模型

研究人员将这两种模型与一个简单的基准进行比较,该基准根据患者的医院服务(例如,普通内科、普通外科、妇产科、心脏病学等)和入院后的时间长短,对最常使用的药物进行排序。在回顾性数据中,医生每次开出一种药物时,模型对990种可能的药物进行排序,然后研究人员再看模型与医生实际开出的药物处方相吻合。


打个比方,假设一个有感染迹象的病人到达医院,该模型回顾了病人电子健康记录中记录的信息:高温、白细胞数量升高、呼吸频率加快,并估计了在这种情况下不同药物的处方可能性,将模型给出的概率最高的几种药物与与医生实际处方的药物(在这个例子中,抗生素万古霉素和氯化钠溶液)相对比。

一半情况下,实际处方在模型给出的前十结果中

在最后的6383组测试数据中,结果还是比较可靠的。

几乎所有(93%)的情况下,模型给出的药物中排名前10中,都包含至少一种临床医生一天之后实际会开出的药物;

55%的情况下,模型将医生开的所有处方药包括在最有可能的10种处方药中;

75%的情况下,模型将医生开的所有处方药包括在最有可能的25种处方药中;

即使对于“假阴性”(医生要求的药物没有出现在前25位的结果中) ,42%的情况下该模型会将同类药物纳入排名。

这种表现不能用仅仅预测先前处方药的模型来解释,即使我们在应用模型时屏蔽了以前的处方,它仍然保持了高性能。

这对医生和病人来说意味着什么?

值得注意的是,这种方式训练的模型只是对医生的行为的重现,因为它出现在历史数据,模型并没有学到如何开具最佳的处方——这些药物工作机理是什么,或什么副作用可能会发生

然而,学习“正常”的处方是为了最终发现不正常、有潜在危险的处方。研究人员表示,在下一阶段的研究中,他们将检查在什么情况下,这些模型可以发现可能造成伤害的药物误用。

这是一项探索性的工作,结果表明机器学习可以应用于建立防止用药错误,帮助保护患者安全。

究人员表示期待着与医生、药剂师、其他临床医生和患者合作,以量化这样的模型是否能够及时捕捉到用药错误,帮助保证患者在医院的安全。

相关报道:

https://ai.googleblog.com/2020/04/a-step-towards-protecting-patients-from.html



相关文章
|
6天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
44 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
8天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
48 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
8天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
46 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
10天前
|
存储 人工智能 PyTorch
【AI系统】模型转换流程
本文详细介绍了AI模型在不同框架间的转换方法,包括直接转换和规范式转换两种方式。直接转换涉及从源框架直接生成目标框架的模型文件,而规范式转换则通过一个中间标准格式(如ONNX)作为桥梁,实现模型的跨框架迁移。文中还提供了具体的转换流程和技术细节,以及模型转换工具的概览,帮助用户解决训练环境与部署环境不匹配的问题。
23 5
【AI系统】模型转换流程
|
10天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型转换基本介绍
模型转换技术旨在解决深度学习模型在不同框架间的兼容性问题,通过格式转换和图优化,将训练框架生成的模型适配到推理框架中,实现高效部署。这一过程涉及模型格式转换、计算图优化、算子统一及输入输出支持等多个环节,确保模型能在特定硬件上快速、准确地运行。推理引擎作为核心组件,通过优化阶段和运行阶段,实现模型的加载、优化和高效执行。面对不同框架的模型文件格式和网络结构,推理引擎需具备高度的灵活性和兼容性,以支持多样化的应用场景。
29 4
【AI系统】模型转换基本介绍
|
10天前
|
机器学习/深度学习 人工智能 算法
【AI系统】模型压缩基本介绍
模型压缩旨在通过减少存储空间、降低计算量和提高计算效率,降低模型部署成本,同时保持模型性能。主要技术包括模型量化、参数剪枝、知识蒸馏和低秩分解,广泛应用于移动设备、物联网、在线服务系统、大模型及自动驾驶等领域。
38 4
【AI系统】模型压缩基本介绍
|
10天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型剪枝
本文概述了模型剪枝的概念、方法及流程,旨在通过移除神经网络中冗余或不重要的参数,实现模型规模的减小和效率的提升。剪枝不仅有助于降低模型的存储和计算需求,还能增强模型的泛化能力。文章详细介绍了剪枝的定义、分类、不同阶段的剪枝流程,以及多种剪枝算法,如基于参数重要性的方法、结构化剪枝、动态剪枝和基于优化算法的全局剪枝策略。通过这些方法,可以在保持模型性能的同时,显著提高模型的计算速度和部署灵活性。
21 2
【AI系统】模型剪枝
|
5天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
11天前
|
机器学习/深度学习 人工智能 编解码
【AI系统】Transformer 模型小型化
本文介绍了几种轻量级的 Transformer 模型,旨在解决传统 Transformer 参数庞大、计算资源消耗大的问题。主要包括 **MobileVit** 和 **MobileFormer** 系列,以及 **EfficientFormer**。MobileVit 通过结合 CNN 和 Transformer 的优势,实现了轻量级视觉模型,特别适合移动设备。MobileFormer 则通过并行结构融合了 MobileNet 和 Transformer,增强了模型的局部和全局表达能力。
39 8
|
11天前
|
机器学习/深度学习 人工智能 编解码
【AI系统】轻量级CNN模型新进展
本文继续探讨CNN模型的小型化,涵盖ESPNet、FBNet、EfficientNet和GhostNet系列。ESPNet系列通过高效空间金字塔卷积减少运算量;FBNet系列采用基于NAS的轻量化网络设计;EfficientNet系列通过复合缩放方法平衡网络深度、宽度和分辨率;GhostNet系列则通过Ghost模块生成更多特征图,减少计算成本。各系列均旨在提升模型效率和性能,适用于移动和边缘设备。
30 6