阿里云服务器ECS不同规格收费价格表(计算/通用/共享/GPU)

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 阿里云服务器ECS有多种实例规格,如ECS计算型c5、计算型c6、通用型g7、大数据型、SSD型、GPU型、突发性能型、共享型等,云服务器ECS实例规格不同价格不同,阿小云来详细说下不同ECS实例规格云服务器收费价格表

阿里云服务器ECS有多种实例规格,如ECS计算型c5、计算型c6、通用型g7、大数据型、SSD型、GPU型、突发性能型、共享型等,云服务器ECS实例规格不同价格不同,阿小云来详细说下不同ECS实例规格云服务器收费价格表

阿里云服务器ECS实例规格价格

阿里云服务器ECS https://dashi.aliyun.com/site/cloud/ecs实例规格不同,性能参数不同,使用场景也不同,当然价格也不同:

实例规格 vCPU 内存(GB) 按量(小时) 标准目录月价 优惠月价 年付月价 3年付月价 5年付月价
通用型 (g6) ecs.g6.large 2 8 0.35 168.0 168.0 142.80 92.40 63.84
通用型 (g6) ecs.g6.xlarge 4 16 0.7 336.0 336.0 285.60 184.80 127.68
通用型 (g6) ecs.g6.2xlarge 8 32 1.4 672.0 672.0 571.20 369.60 255.36
通用型 (g6) ecs.g6.3xlarge 12 48 2.1 1008.0 1008.0 856.80 554.40 383.04
通用型 (g6) ecs.g6.4xlarge 16 64 2.8 1344.0 1344.0 1142.40 739.20 510.72
通用型 (g6) ecs.g6.6xlarge 24 96 4.2 2016.0 2016.0 1713.60 1108.80 766.08
通用型 (g6) ecs.g6.8xlarge 32 128 5.6 2688.0 2688.0 2284.80 1478.40 1021.44
通用型 (g6) ecs.g6.13xlarge 52 192 9.1 4368.0 4368.0 3712.80 2402.40 1659.84
通用型 (g6) ecs.g6.26xlarge 104 384 18.2 8736.0 8736.0 7425.60 4804.80 3319.68
内存型 (r6) ecs.r6.large 2 16 0.46 220.0 220.0 187.00 121.00 83.60
内存型 (r6) ecs.r6.xlarge 4 32 0.92 440.0 440.0 374.00 242.00 167.20
内存型 (r6) ecs.r6.2xlarge 8 64 1.83 880.0 880.0 748.00 484.00 334.40
内存型 (r6) ecs.r6.3xlarge 12 96 2.75 1320.0 1320.0 1122.00 726.00 501.60
内存型 (r6) ecs.r6.4xlarge 16 128 3.67 1760.0 1760.0 1496.00 968.00 668.80
内存型 (r6) ecs.r6.6xlarge 24 192 5.5 2640.0 2640.0 2244.00 1452.00 1003.20
内存型 (r6) ecs.r6.8xlarge 32 256 7.33 3520.0 3520.0 2992.00 1936.00 1337.60
内存型 (r6) ecs.r6.13xlarge 52 384 11.92 5720.0 5720.0 4862.00 3146.00 2173.60
内存型 (r6) ecs.r6.26xlarge 104 768 23.83 11440.0 11440.0 9724.00 6292.00 4347.20
计算型 (c6) ecs.c6.large 2 4 0.27 131.0 131.0 111.35 72.05 49.78
计算型 (c6) ecs.c6.xlarge 4 8 0.55 262.0 262.0 222.70 144.10 99.56
计算型 (c6) ecs.c6.2xlarge 8 16 1.09 524.0 524.0 445.40 288.20 199.12
计算型 (c6) ecs.c6.3xlarge 12 24 1.64 786.0 786.0 668.10 432.30 298.68
计算型 (c6) ecs.c6.4xlarge 16 32 2.18 1048.0 1048.0 890.80 576.40 398.24
计算型 (c6) ecs.c6.6xlarge 24 48 3.28 1572.0 1572.0 1336.20 864.60 597.36
计算型 (c6) ecs.c6.8xlarge 32 64 4.37 2096.0 2096.0 1781.60 1152.80 796.48
计算型 (c6) ecs.c6.13xlarge 52 104 7.1 3406.0 3406.0 2895.10 1873.30 1294.28
计算型 (c6) ecs.c6.26xlarge 104 192 14.19 6812.0 6812.0 5790.20 3746.60 2588.56
通用型 (g5) ecs.g5.large 2 8 0.66 191.0 181.45 143.25 85.95 57.30
通用型 (g5) ecs.g5.xlarge 4 16 1.33 383.0 363.85 287.25 172.35 114.90
通用型 (g5) ecs.g5.2xlarge 8 32 2.66 765.0 726.75 573.75 344.25 229.50
通用型 (g5) ecs.g5.3xlarge 12 48 3.99 1148.0 1090.6 861.00 516.60 344.40
通用型 (g5) ecs.g5.4xlarge 16 64 5.31 1530.0 1453.5 1147.50 688.50 459.00
通用型 (g5) ecs.g5.6xlarge 24 96 7.97 2295.0 2180.25 1721.25 1032.75 688.50
通用型 (g5) ecs.g5.8xlarge 32 128 10.63 3060.0 2907.0 2295.00 1377.00 918.00
通用型 (g5) ecs.g5.16xlarge 64 256 21.25 6120.0 5814.0 4590.00 2754.00 1836.00
密集计算型 (ic5) ecs.ic5.large 2 2 0.44 128.0 128.0 108.80 70.40 48.64
密集计算型 (ic5) ecs.ic5.xlarge 4 4 0.89 255.0 255.0 216.75 140.25 96.90
密集计算型 (ic5) ecs.ic5.2xlarge 8 8 1.77 510.0 510.0 433.50 280.50 193.80
密集计算型 (ic5) ecs.ic5.3xlarge 12 12 2.66 765.0 765.0 650.25 420.75 290.70
密集计算型 (ic5) ecs.ic5.4xlarge 16 16 3.54 1020.0 1020.0 867.00 561.00 387.60
计算型 (c5) ecs.c5.large 2 4 0.47 134.0 134.0 113.90 73.70 49.58
计算型 (c5) ecs.c5.xlarge 4 8 0.93 269.0 269.0 228.65 147.95 99.53
计算型 (c5) ecs.c5.2xlarge 8 16 1.86 537.0 537.0 456.45 295.35 198.69
计算型 (c5) ecs.c5.3xlarge 12 24 2.8 806.0 806.0 685.10 443.30 298.22
计算型 (c5) ecs.c5.4xlarge 16 32 3.73 1074.0 1074.0 912.90 590.70 397.38
计算型 (c5) ecs.c5.6xlarge 24 48 5.59 1611.0 1611.0 1369.35 886.05 596.07
计算型 (c5) ecs.c5.8xlarge 32 64 7.46 2148.0 2148.0 1825.80 1181.40 794.76
计算型 (c5) ecs.c5.16xlarge 64 128 14.92 4296.0 4296.0 3651.60 2362.80 1589.52
内存型 (r5) ecs.r5.large 2 16 0.85 245.0 232.75 183.75 110.25 73.50
内存型 (r5) ecs.r5.xlarge 4 32 1.7 489.0 464.55 366.75 220.05 146.70
内存型 (r5) ecs.r5.2xlarge 8 64 3.4 978.0 929.1 733.50 440.10 293.40
内存型 (r5) ecs.r5.3xlarge 12 96 5.09 1467.0 1393.65 1100.25 660.15 440.10
内存型 (r5) ecs.r5.4xlarge 16 128 6.79 1956.0 1858.2 1467.00 880.20 586.80
内存型 (r5) ecs.r5.6xlarge 24 192 10.19 2934.0 2787.3 2200.50 1320.30 880.20
内存型 (r5) ecs.r5.8xlarge 32 256 13.58 3912.0 3716.4 2934.00 1760.40 1173.60
内存型 (r5) ecs.r5.16xlarge 64 512 27.17 7824.0 7432.8 5868.00 3520.80 2347.20
内存增强型 (re4) ecs.re4.20xlarge 80 960 68.75 19800.0 19800.0 16830.00 9900.00 9900.00
内存增强型 (re4) ecs.re4.40xlarge 160 1920 137.5 39600.0 39600.0 33660.00 19800.00 19800.00
GPU计算型弹性裸金属服务器 (ebmgn6i) ecs.ebmgn6i.24xlarge 96 384 61.88 17820.0 17820.0 15147.00 9801.00 6771.60
高主频型超级计算集群 (scch5) ecs.scch5.16xlarge 64 192 31.77 9150.0 8692.5 6862.50 4117.50 2745.00
通用型超级计算集群 (sccg5) ecs.sccg5.24xlarge 96 384 44.63 12852.0 12209.4 9639.00 5783.40 3855.60
计算网络增强型 (sn1ne) ecs.sn1ne.large 2 4 0.51 148.0 148.0 125.80 81.40 56.24
计算网络增强型 (sn1ne) ecs.sn1ne.xlarge 4 8 1.03 296.0 296.0 251.60 162.80 112.48
计算网络增强型 (sn1ne) ecs.sn1ne.2xlarge 8 16 2.05 591.0 591.0 502.35 325.05 224.58
计算网络增强型 (sn1ne) ecs.sn1ne.3xlarge 12 24 3.08 887.0 887.0 753.95 487.85 337.06
计算网络增强型 (sn1ne) ecs.sn1ne.4xlarge 16 32 4.1 1182.0 1182.0 1004.70 650.10 449.16
计算网络增强型 (sn1ne) ecs.sn1ne.6xlarge 24 48 6.16 1773.0 1773.0 1507.05 975.15 673.74
计算网络增强型 (sn1ne) ecs.sn1ne.8xlarge 32 64 8.21 2364.0 2364.0 2009.40 1300.20 898.32
通用网络增强型 (sn2ne) ecs.sn2ne.large 2 8 0.75 215.0 204.25 161.25 96.75 64.50
通用网络增强型 (sn2ne) ecs.sn2ne.xlarge 4 16 1.49 429.0 407.55 321.75 193.05 128.70
通用网络增强型 (sn2ne) ecs.sn2ne.2xlarge 8 32 2.98 858.0 815.1 643.50 386.10 257.40
通用网络增强型 (sn2ne) ecs.sn2ne.3xlarge 12 48 4.47 1287.0 1222.65 965.25 579.15 386.10
通用网络增强型 (sn2ne) ecs.sn2ne.4xlarge 16 64 5.96 1716.0 1630.2 1287.00 772.20 514.80
通用网络增强型 (sn2ne) ecs.sn2ne.6xlarge 24 96 8.94 2574.0 2445.3 1930.50 1158.30 772.20
通用网络增强型 (sn2ne) ecs.sn2ne.8xlarge 32 128 11.92 3432.0 3260.4 2574.00 1544.40 1029.60
通用网络增强型 (sn2ne) ecs.sn2ne.14xlarge 56 224 20.85 6006.0 5705.7 4504.50 2702.70 1801.80
内存型 (se1) ecs.se1.large 2 16 1.14 329.4 329.4 279.99 164.70 164.70
内存型 (se1) ecs.se1.xlarge 4 32 2.29 658.8 658.8 559.98 329.40 329.40
内存型 (se1) ecs.se1.2xlarge 8 64 4.58 1317.6 1317.6 1119.96 658.80 658.80
内存型 (se1) ecs.se1.4xlarge 16 128 9.15 2635.2 2635.2 2239.92 1317.60 1317.60
内存型 (se1) ecs.se1.8xlarge 32 256 18.3 5270.4 5270.4 4479.84 2635.20 2635.20
内存型 (se1) ecs.se1.14xlarge 56 480 32.03 9223.2 9223.2 7839.72 4611.60 4611.60
内存网络增强型 (se1ne) ecs.se1ne.large 2 16 1.27 366.0 347.7 274.50 164.70 109.80
内存网络增强型 (se1ne) ecs.se1ne.xlarge 4 32 2.54 732.0 695.4 549.00 329.40 219.60
内存网络增强型 (se1ne) ecs.se1ne.2xlarge 8 64 5.08 1464.0 1390.8 1098.00 658.80 439.20
内存网络增强型 (se1ne) ecs.se1ne.3xlarge 12 96 7.63 2196.0 2086.2 1647.00 988.20 658.80
内存网络增强型 (se1ne) ecs.se1ne.4xlarge 16 128 10.17 2928.0 2781.6 2196.00 1317.60 878.40
内存网络增强型 (se1ne) ecs.se1ne.6xlarge 24 192 15.25 4392.0 4172.4 3294.00 1976.40 1317.60
内存网络增强型 (se1ne) ecs.se1ne.8xlarge 32 256 20.33 5856.0 5563.2 4392.00 2635.20 1756.80
内存网络增强型 (se1ne) ecs.se1ne.14xlarge 56 480 35.58 10248.0 9735.6 7686.00 4611.60 3074.40
高主频计算型 (c4) ecs.c4.xlarge 4 8 1.32 633.88 602.19 475.41 285.25 190.16
高主频计算型 (c4) ecs.c4.2xlarge 8 16 2.65 1267.76 1204.37 950.82 570.49 380.33
高主频计算型 (c4) ecs.c4.4xlarge 16 32 5.29 2535.52 2408.74 1901.64 1140.98 760.66
高主频通用型 (cm4) ecs.cm4.xlarge 4 16 1.6 748.39 710.97 561.29 336.78 224.52
高主频通用型 (cm4) ecs.cm4.2xlarge 8 32 3.27 1496.86 1422.02 1122.64 673.59 449.06
高主频通用型 (cm4) ecs.cm4.4xlarge 16 64 6.62 2993.86 2844.17 2245.39 1347.24 898.16
高主频通用型 (cm4) ecs.cm4.6xlarge 24 96 9.89 4490.72 4266.18 3368.04 2020.82 1347.22
高主频内存型 (ce4) ecs.ce4.xlarge 4 32 2.19 998.88 948.94 749.16 449.50 299.66
本地SSD型 (i1) ecs.i1.xlarge 4 16 2.03 584.1 554.89 438.07 262.85 175.23
本地SSD型 (i1) ecs.i1.2xlarge 8 32 4.06 1168.2 1109.79 876.15 525.69 350.46
本地SSD型 (i1) ecs.i1.3xlarge 12 48 6.76 1947.0 1849.65 1460.25 876.15 584.10
本地SSD型 (i1) ecs.i1.4xlarge 16 64 8.11 2336.4 2219.58 1752.30 1051.38 700.92
本地SSD型 (i1) ecs.i1-c5d1.4xlarge 16 64 10.52 3028.9 2877.46 2271.67 1363.00 908.67
本地SSD型 (i1) ecs.i1.8xlarge 32 128 16.23 4672.8 4439.16 3504.60 2102.76 1401.84
本地SSD型 (i1) ecs.i1-c10d1.8xlarge 32 128 17.67 5088.1 4833.7 3816.07 2289.64 1526.43
本地SSD型 (i1) ecs.i1.14xlarge 56 224 28.39 8177.4 7768.53 6133.05 3679.83 2453.22
本地SSD型 (i2) ecs.i2.xlarge 4 32 1.33 640.0 640.0 544.00 352.00 243.20
本地SSD型 (i2) ecs.i2.2xlarge 8 64 2.67 1280.0 1280.0 1088.00 704.00 486.40
本地SSD型 (i2) ecs.i2.4xlarge 16 128 5.33 2560.0 2560.0 2176.00 1408.00 972.80
本地SSD型 (i2) ecs.i2.8xlarge 32 256 10.67 5120.0 5120.0 4352.00 2816.00 1945.60
本地SSD型 (i2) ecs.i2.16xlarge 64 512 21.33 10240.0 10240.0 8704.00 5632.00 3891.20
大数据型 (d1) ecs.d1.2xlarge 8 32 5.73 1649.7 1567.21 1237.27 742.37 494.91
大数据型 (d1) ecs.d1.4xlarge 16 64 11.46 3299.4 3134.43 2474.55 1484.73 989.82
大数据型 (d1) ecs.d1.6xlarge 24 96 17.18 4949.1 4701.64 3711.83 2227.09 1484.73
大数据型 (d1) ecs.d1.8xlarge 32 128 22.91 6598.8 6268.86 4949.10 2969.46 1979.64
大数据型 (d1) ecs.d1.14xlarge 56 224 40.1 11547.9 10970.5 8660.93 5196.56 3464.37
大数据网络增强型 (d1ne) ecs.d1ne.2xlarge 8 32 5.01 1444.0 1371.8 1083.00 649.80 433.20
大数据网络增强型 (d1ne) ecs.d1ne.4xlarge 16 64 10.03 2888.0 2743.6 2166.00 1299.60 866.40
大数据网络增强型 (d1ne) ecs.d1ne.6xlarge 24 96 15.04 4331.0 4114.45 3248.25 1948.95 1299.30
大数据网络增强型 (d1ne) ecs.d1ne.8xlarge 32 128 20.05 5775.0 5486.25 4331.25 2598.75 1732.50
大数据网络增强型 (d1ne) ecs.d1ne.14xlarge 56 224 35.09 10106.0 9600.7 7579.50 4547.70 3031.80
大数据网络增强型 (d1ne) ecs.d1ne-c8d3.8xlarge 32 128 19.25 5543.0 5265.85 4157.25 2494.35 1662.90
大数据网络增强型 (d1ne) ecs.d1ne-c14d3.14xlarge 56 224 29.19 8407.0 7986.65 6305.25 3783.15 2522.10
GPU计算型 (gn6i) ecs.gn6i-c4g1.xlarge 4 15 10.46 3013.0 3013.0 2561.05 1657.15 1144.94
GPU计算型 (gn6i) ecs.gn6i-c8g1.2xlarge 8 31 12.6 3629.0 3629.0 3084.65 1995.95 1379.02
GPU计算型 (gn6i) ecs.gn6i-c16g1.4xlarge 16 62 14.77 4253.0 4253.0 3615.05 2339.15 1616.14
GPU计算型 (gn6i) ecs.gn6i-c24g1.6xlarge 24 93 15.47 4455.0 4455.0 3786.75 2450.25 1692.90
GPU计算型 (gn6i) ecs.gn6i-c24g1.12xlarge 48 186 30.94 8910.0 8910.0 7573.50 4900.50 3385.80
GPU计算型 (gn6v) ecs.gn6v-c8g1.2xlarge 8 32 19.84 5715.0 5715.0 4857.75 3143.25 2171.70
GPU计算型 (gn6v) ecs.gn6v-c8g1.8xlarge 32 128 79.36 22860.0 22860.0 19431.00 12573.00 8686.80
GPU计算型 (gn6v) ecs.gn6v-c8g1.16xlarge 64 256 158.72 45720.0 45720.0 38862.00 25146.00 17373.60
GPU计算型 (gn6v) ecs.gn6v-c10g1.20xlarge 96 384 197.67 56929.5 56929.5 48390.08 31311.23 21633.21
GPU轻量型 (vgn5i) ecs.vgn5i-m1.large 2 6 1.95 562.5 562.5 478.13 309.38 213.75
GPU轻量型 (vgn5i) ecs.vgn5i-m2.xlarge 4 12 3.91 1125.0 1125.0 956.25 618.75 427.50
GPU轻量型 (vgn5i) ecs.vgn5i-m4.2xlarge 8 24 7.81 2250.0 2250.0 1912.50 1237.50 855.00
GPU轻量型 (vgn5i) ecs.vgn5i-m8.4xlarge 16 48 15.63 4500.0 4500.0 3825.00 2475.00 1710.00
GPU计算型 (gn5) ecs.gn5-c4g1.xlarge 4 30 12.78 3681.0 3681.0 3128.85 1914.12 1288.35
GPU计算型 (gn5) ecs.gn5-c8g1.2xlarge 8 60 13.849 3989.7 3989.7 3391.25 2074.64 1396.39
GPU计算型 (gn5) ecs.gn5-c4g1.2xlarge 8 60 25.57 7363.0 7363.0 6258.55 3828.76 2577.05
GPU计算型 (gn5) ecs.gn5-c8g1.4xlarge 16 120 27.709 7979.4 7979.4 6782.49 4149.29 2792.79
GPU计算型 (gn5) ecs.gn5-c28g1.7xlarge 28 112 23.88 6877.0 6877.0 5845.45 3576.04 2406.95
GPU计算型 (gn5) ecs.gn5-c8g1.8xlarge 32 240 55.409 15957.9 15957.9 13564.21 8298.11 5585.27
GPU计算型 (gn5) ecs.gn5-c28g1.14xlarge 56 224 47.75 13753.0 13753.0 11690.05 7151.56 4813.55
GPU计算型 (gn5) ecs.gn5-c8g1.14xlarge 54 480 110.819 31915.8 31915.8 27128.43 16596.22 11170.53
GPU计算型 (gn5i) ecs.gn5i-c2g1.large 2 8 6.51 1875.0 1781.25 1406.25 843.75 562.50
GPU计算型 (gn5i) ecs.gn5i-c4g1.xlarge 4 16 7.27 2093.0 1988.35 1569.75 941.85 627.90
GPU计算型 (gn5i) ecs.gn5i-c8g1.2xlarge 8 32 8.75 2520.0 2394.0 1890.00 1134.00 756.00
GPU计算型 (gn5i) ecs.gn5i-c16g1.4xlarge 16 64 11.72 3375.0 3206.25 2531.25 1518.75 1012.50
GPU计算型 (gn5i) ecs.gn5i-c28g1.14xlarge 56 224 32.29 9300.0 8835.0 6975.00 4185.00 2790.00
GPU计算型 (gn4) ecs.gn4-c4g1.xlarge 4 30 10.88 3134.0 2977.3 2350.50 1410.30 940.20
GPU计算型 (gn4) ecs.gn4-c8g1.2xlarge 8 30 12.41 3575.0 3396.25 2681.25 1608.75 1072.50
GPU计算型 (gn4) ecs.gn4-c4g1.2xlarge 8 60 21.76 6268.0 5954.6 4701.00 2820.60 1880.40
GPU计算型 (gn4) ecs.gn4-c8g1.4xlarge 16 60 24.83 7150.0 6792.5 5362.50 3217.50 2145.00
GPU计算型 (gn4) ecs.gn4.8xlarge 32 48 14.93 4300.0 4085.0 3225.00 1935.00 1290.00
GPU计算型 (gn4) ecs.gn4.14xlarge 56 96 29.86 8599.0 8169.05 6449.25 3869.55 2579.70
GPU可视化计算型 (ga1) ecs.ga1.xlarge 4 10 2.2 633.0 601.35 474.75 284.85 189.90
GPU可视化计算型 (ga1) ecs.ga1.2xlarge 8 20 4.4 1266.0 1202.7 949.50 569.70 379.80
GPU可视化计算型 (ga1) ecs.ga1.4xlarge 16 40 8.79 2531.0 2404.45 1898.25 1138.95 759.30
GPU可视化计算型 (ga1) ecs.ga1.8xlarge 32 80 17.58 5062.0 4808.9 3796.50 2277.90 1518.60
GPU可视化计算型 (ga1) ecs.ga1.14xlarge 56 160 35.16 10125.0 9618.75 7593.75 4556.25 3037.50
FPGA计算型 (f1) ecs.f1-c8f1.2xlarge 8 60 8.66 2495.0 2370.25 1871.25 1122.75 748.50
FPGA计算型 (f1) ecs.f1-c8f1.4xlarge 16 120 17.33 4990.0 4740.5 3742.50 2245.50 1497.00
FPGA计算型 (f1) ecs.f1-c28f1.7xlarge 28 112 15.14 4360.0 4142.0 3270.00 1962.00 1308.00
FPGA计算型 (f1) ecs.f1-c28f1.14xlarge 56 224 30.28 8720.0 8284.0 6540.00 3924.00 2616.00
FPGA计算型 (f3) ecs.f3-c16f1.4xlarge 16 64 17.5 5040.0 5040.0 4284.00 2772.00 1915.20
FPGA计算型 (f3) ecs.f3-c16f1.8xlarge 32 128 35.0 10080.0 10080.0 8568.00 5544.00 3830.40
FPGA计算型 (f3) ecs.f3-c16f1.16xlarge 64 256 70.0 20160.0 20160.0 17136.00 11088.00 7660.80
高主频计算型 (hfc5) ecs.hfc5.large 2 4 0.65 188.0 188.0 156.04 94.00 62.04
高主频计算型 (hfc5) ecs.hfc5.xlarge 4 8 1.31 377.0 377.0 312.91 188.50 124.41
高主频计算型 (hfc5) ecs.hfc5.2xlarge 8 16 2.61 753.0 753.0 624.99 376.50 248.49
高主频计算型 (hfc5) ecs.hfc5.3xlarge 12 24 3.92 1130.0 1130.0 937.90 565.00 372.90
高主频计算型 (hfc5) ecs.hfc5.4xlarge 16 32 5.23 1506.0 1506.0 1249.98 753.00 496.98
高主频计算型 (hfc5) ecs.hfc5.6xlarge 24 48 7.84 2259.0 2259.0 1874.97 1129.50 745.47
高主频计算型 (hfc5) ecs.hfc5.8xlarge 32 64 10.46 3012.0 3012.0 2499.96 1506.00 993.96
高主频通用型 (hfg5) ecs.hfg5.large 2 8 0.86 249.0 249.0 201.69 122.01 79.68
高主频通用型 (hfg5) ecs.hfg5.xlarge 4 16 1.73 498.0 498.0 403.38 244.02 159.36
高主频通用型 (hfg5) ecs.hfg5.2xlarge 8 32 3.46 996.0 996.0 806.76 488.04 318.72
高主频通用型 (hfg5) ecs.hfg5.3xlarge 12 48 5.19 1494.0 1494.0 1210.14 732.06 478.08
高主频通用型 (hfg5) ecs.hfg5.4xlarge 16 64 6.92 1992.0 1992.0 1613.52 976.08 637.44
高主频通用型 (hfg5) ecs.hfg5.6xlarge 24 96 10.38 2988.0 2988.0 2420.28 1464.12 956.16
高主频通用型 (hfg5) ecs.hfg5.8xlarge 32 128 13.83 3984.0 3984.0 3227.04 1952.16 1274.88
高主频通用型 (hfg5) ecs.hfg5.14xlarge 56 160 22.94 6606.0 6606.0 5350.86 3236.94 2113.92

阿里云有个活动:阿里云·云小站服务器特价活动,这上面的云服务器主机型号是固定的,但是价格足够便宜,便宜到什么程度?阿里云2核2G5M带宽服务器一年60元,云服务器ECS实例规格不同,活动价格也不同。

相关实践学习
2分钟自动化部署人生模拟器
本场景将带你借助云效流水线Flow实现人生模拟器小游戏的自动化部署
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情: https://www.aliyun.com/product/ecs
相关文章
|
23天前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
8天前
|
人工智能 弹性计算 编解码
阿里云GPU云服务器性能、应用场景及收费标准和活动价格参考
GPU云服务器作为阿里云提供的一种高性能计算服务,通过结合GPU与CPU的计算能力,为用户在人工智能、高性能计算等领域提供了强大的支持。其具备覆盖范围广、超强计算能力、网络性能出色等优势,且计费方式灵活多样,能够满足不同用户的需求。目前用户购买阿里云gpu云服务器gn5 规格族(P100-16G)、gn6i 规格族(T4-16G)、gn6v 规格族(V100-16G)有优惠,本文为大家详细介绍阿里云gpu云服务器的相关性能及收费标准与最新活动价格情况,以供参考和选择。
|
13天前
|
机器学习/深度学习 人工智能 弹性计算
什么是阿里云GPU云服务器?GPU服务器优势、使用和租赁费用整理
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等多种场景。作为亚太领先的云服务提供商,阿里云的GPU云服务器具备灵活的资源配置、高安全性和易用性,支持多种计费模式,帮助企业高效应对计算密集型任务。
|
13天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云GPU服务器全解析_GPU价格收费标准_GPU优势和使用说明
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等场景。作为亚太领先的云服务商,阿里云GPU云服务器具备高灵活性、易用性、容灾备份、安全性和成本效益,支持多种实例规格,满足不同业务需求。
|
21天前
|
弹性计算 异构计算
2024年阿里云GPU服务器多少钱1小时?亲测价格查询方法
2024年阿里云GPU服务器每小时收费因实例规格不同而异。可通过阿里云GPU服务器页面选择“按量付费”查看具体价格。例如,NVIDIA A100的gn7e实例为34.742元/小时,NVIDIA A10的gn7i实例为12.710156元/小时。更多详情请访问阿里云官网。
66 2
|
30天前
|
机器学习/深度学习 并行计算 算法
GPU加速与代码性能优化:挖掘计算潜力的深度探索
【10月更文挑战第20天】GPU加速与代码性能优化:挖掘计算潜力的深度探索
|
22天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
|
15天前
|
存储 分布式计算 固态存储
阿里云2核16G、4核32G、8核64G配置云服务器租用收费标准与活动价格参考
2核16G、8核64G、4核32G配置的云服务器处理器与内存比为1:8,这种配比的云服务器一般适用于数据分析与挖掘,Hadoop、Spark集群和数据库,缓存等内存密集型场景,因此,多为企业级用户选择。目前2核16G配置按量收费最低收费标准为0.54元/小时,按月租用标准收费标准为260.44元/1个月。4核32G配置的阿里云服务器按量收费标准最低为1.08元/小时,按月租用标准收费标准为520.88元/1个月。8核64G配置的阿里云服务器按量收费标准最低为2.17元/小时,按月租用标准收费标准为1041.77元/1个月。本文介绍这些配置的最新租用收费标准与活动价格情况,以供参考。
|
21天前
|
弹性计算
阿里云2核16G服务器多少钱一年?亲测价格查询1个月和1小时收费标准
阿里云2核16G服务器提供多种ECS实例规格,内存型r8i实例1年6折优惠价为1901元,按月收费334.19元,按小时收费0.696221元。更多规格及详细报价请访问阿里云ECS页面。
58 9
|
18天前
|
监控 Ubuntu Linux
使用VSCode通过SSH远程登录阿里云Linux服务器异常崩溃
通过 VSCode 的 Remote - SSH 插件远程连接阿里云 Ubuntu 22 服务器时,会因高 CPU 使用率导致连接断开。经排查发现,VSCode 连接根目录 ".." 时会频繁调用"rg"(ripgrep)进行文件搜索,导致 CPU 负载过高。解决方法是将连接目录改为"root"(或其他具体的路径),避免不必要的文件检索,从而恢复正常连接。
下一篇
无影云桌面