阿里妈妈流量反作弊算法实践

简介: 作者:@阿里妈妈风控团队背景阿里妈妈是阿里巴巴集团旗下商业数字营销平台。依托阿里巴巴集团核心的商业数据和超级媒体矩阵,为数百万的广告主每年提供上千亿金额的广告服务。2020年中国互联网广告市场规模达5292亿元,根据秒针《2020中国异常流量报告》显示,异常流量占比约8.6%。作为全球顶级广告平台,阿里妈妈坐拥价值逾千亿的商业流量,是黑灰产觊觎的主要目标。风控团队的核心工作之一,就是甄别其中作弊、

作者:@阿里妈妈风控团队

背景

阿里妈妈是阿里巴巴集团旗下商业数字营销平台。依托阿里巴巴集团核心的商业数据和超级媒体矩阵,为数百万的广告主每年提供上千亿金额的广告服务。

2020年中国互联网广告市场规模达5292亿元,根据秒针《2020中国异常流量报告》显示,异常流量占比约8.6%。作为全球顶级广告平台,阿里妈妈坐拥价值逾千亿的商业流量,是黑灰产觊觎的主要目标。风控团队的核心工作之一,就是甄别其中作弊、低质量的部分,保护广告主和平台的利益。

一、广告风控流程

下图是广告主投放内容与风控团队、下游业务团队的简易交互流程。广告素材通过内容风控审核后,即可以在线上进行展示。在展示期间,广告主可能会主动作弊、也可能受到其他广告主攻击。风控团队需要对无效流量进行过滤,保护广告主的利益,维护健康的广告投放环境。

本文重点介绍在线展示期间,流量、淘客交易场景下的业务风险与算法体系。详细的解决方案在未来的文章中逐一介绍。

二、无效流量

流量反作弊系统的核心能力就是清洗、过滤无效流量。但是无效流量并不等价于作弊流量我们将这部分流量的定义分为2个层面:

1)低质量重复点击计费策略、频率控制策略、剧烈波动策略...等;

2)作弊:转化效果概率为0的流量;

作弊流量转化期望概率一定为0,比如爬虫产生的点击流量。但后续实际频率为0的流量不一定是作弊。比如新商品累计1万点击后仍没有转化,只能说频率为0。不能直接断定为作弊流量。

常见的无效流量包括:1)消耗竞争对手;2)提升自身排名;3)自然宝贝刷单误伤广告主;4)非恶意无效流量。如下图所示,一名诚信投放的广告主,可能受到多种维度的影响。

2.1 消耗竞争对手

广告主在设置投放策略的时候,通常有预算限制。一些广告主,通过构造虚假流量,攻击其他广告主,消耗预算致使广告下架。如原定计划可以投放7日的广告内容,在第2天突然被完全消耗。这种情况下,很容易引起受害广告主的投诉,影响恶劣。

2.2 提升自身排名

广告排名由出价和质量评分决定。一些广告主会雇佣黑产刷单,提高广告的转化率。通过低成本获得靠前的广告排名。这些作弊利益驱动属性也很强,比较容易被平台和相关广告主感知到。对平台的影响也较为恶劣。

2.3 自然宝贝刷单

一些广告主通过雇佣黑产提高店铺的成交数、好评数、加购收藏数等。刷手为了更好地隐层自己,往往会装作“货比三家”,查看多个宝贝信息。该过程偶尔会误伤了广告展示宝贝。这种作弊对广告生态的影响比较弱。感知程度会偏低一些。此外,人工刷手往往伪装的更好,在流量甄别上难度比较大。

2.4 非恶意无效流量

除了上述带有恶意的虚假流量。还有非恶意、非薅羊毛的无效流量需要被过滤。比如一些浏览器在打开淘宝首页时,会预加载所有的宝贝链接后续跳转网页。显然这些是无效流量。又比如,爬虫或浏览器劫持而产生的流量,不应该计入广告主的费用中。

2.5 淘客交易作弊

淘宝联盟是阿里妈妈平台给淘宝客推广者搭建的推广平台,在淘宝联盟后台可以完成取链、推广和提现等一系列操作。而淘客交易作弊,不满足作弊流量转化概率为0的假设。根据计费方式不同,常见的2种作弊形式为:1)流量劫持;2)黑灰产淘客拉新。

2.5.1 流量劫持

CPS计费下的主要作弊手法是流量劫持。常见的流量劫持有2种。

第一种,是篡改记录用户流量来源,将其他淘宝客的拉新流量据为己有。广告主会明显感知到自然流量变少,拉新流量增加。第二种,是修改用户跳转链接,使得用户跳转到自己的宝贝页面。会导致用户在不知情的情况下购买了另一家店铺的商品。此时商家会在销量层面有一定感知。

2.5.2 黑灰产淘客拉新

CPA计费下的主要问题是虚假地址。常见的CPA通常发生在产品拉新中,如用户注册、用户下单...等。在一些淘宝客拉新场景中,需要拉新用户完成注册、下单等一系列流程。此时一些淘宝客通过批量注册,下单廉价商品来赚取拉新差价。

除开虚拟类目以外,实体商品需要填写明确的收获地址。由于大量相同地址容易引起商家警觉,真实非本人地址可能引起快递机构的投诉,影响其后续结算。所以淘宝客往往会构造一些半真半假的虚假地址,用于收货。因此虚假地址的识别是该场景下的重点抓手之一。

2.6 下游任务影响

对于阿里妈妈来说,虚假流量不单影响着其他广告主的权益,同时影响着阿里生态的下游业务。搜索、推荐、广告等业务的收益,强依赖于其基于用户行为数据的在线学习。如:个性化推荐、点击率预估、流量分发、广告定价等。而当这些任务中混入虚假流量时,会对其真实线上的精度造成极大影响。

三、算法实践

相比于其他正向业务,流量反作弊对于精度的要求尤其高。多过滤导致平台收益减少、少过滤引起广告主投诉,破坏投放生态。而且业务场景对实时返款的诉求越来越强烈,同时作弊对抗升级,从集中式、大规模转向分布式、稀疏化攻击,识别难度增大。亟需基于高维异常检查的新系统能力。为此,我们建立了集异常主动感知、人工洞察分析、自动处置过滤、客观评价高效循环一体的风控系统。

3.1 感知

在历史的风控体系中,往往是Case驱动的。即遇到问题通过滞后的算法或策略迭代来覆盖风险。为了提前发现问题,尽可能减少投诉,净化投放环境,我们引入了感知。通过感知捕捉与常见分布不同的数据,输出异常列表。

我们将可感知异常流量分为:1)受害者可感知;2)平台可感知;3)实战攻防可感知;4)假想攻防可感知;5)算法挖掘可感知。

感知是重召回的,但并不是单纯为了更多地召回现有风险。它设计的核心是去感知所有的“异常”。以2020年初为例,由于骑行政策的调整,售卖头盔商家的访问量显著偏高,连带着必然影响到点击率、转化率等一系列指标。这些异常是商铺可感知的,需要被我们捕捉到。但并不属于作弊流量。所以不会被流量反作弊系统所过滤。

那感知究竟如何来做呢?以“点击流量反作弊”来说,作弊一定会导致点击量增加。如果可以预估出一个商品每天的点击数量。则超出该值的点击一定为作弊。因此流量反作弊感知的核心之一,就是如何在大盘召回率未知的情况下,精准预估正常流量值。这部分内容在后续文章中进行介绍。

3.2 洞察

为了确认感知到的异常流量哪些属于作弊,分析人员需要进行洞察分析。“洞察 ”的目的是从“感知”到的异常中将风险抽离出来,进而发现新的风险模式。我们将洞察分为:1)受害者洞察;2)攻击者洞察;3)套利漏洞洞察;4)流量实例洞察。

传统洞察需要人工挑选可疑特征(如停留时长、注册时长),并与大盘好样本进行比较。如下图。这就对领域经验有强依赖。而领域专家毕竟是少数。并且随着作弊越发高级,单一维度或少量维度下逐渐难以发现作弊。为此,我们引入了高维数据下的可视化洞察分析技术。

在洞察环节,首先需要对样本进行高度抽象表示。如何在高维数据中选择合适的子空间投影,是非常具有挑战性的课题。后续文章会展开介绍。确定合适的子空间后,除了和大盘比较,我们还引入了时间维度的分布同比,如下图所示。对于分布稳定的某个广告,3月6日降维图中突然出现明显不同的一簇(红圈内),很可能是新的异常模式。(图中“样本库”指最终被识别为作弊的流量,在3.3节进行介绍)

洞察的难点在于,如何减轻未召回的作弊对正常分布的污染。比如上图中蓝色线条内部分可能也存在作弊,这时通过同比就无法发现异常。如何跳出既有认知去召回未知异常模式,以及非常棘手的冷启动问题,这些都是后续文章的重点内容。

3.3 处置

处置,指对风险进行处置。对于不同的风险实体、风险类型,会使用不同的处置方法。

3.3.1 流量反作弊的处置

传统的算法迭代模式,是根据洞察分析的结果,指导规则、统计模型为主的无监督过滤系统。对领域经验比较依赖,而且效率低下、难以形成沉淀。因此,对于流量反作弊的处置,我们部署了实时流式、小时批处理双重防线。其逻辑如下图所示。

在线实时过滤系统,综合了无监督、半监督的特征工程,以及监督的集成(Ensemble)异常检测器。相比于单条策略的独立决策,集成的容错性更高(召回能力下降,适用于精度高的场景)。例如,PC端反作弊策略依赖于网页采集的前端行为、鼠标点击行为等,当数据采集出错时,过渡依赖某一策略将导致大面积误差。

同时,我们会尽可能使用更触及作弊本质、更具有鲁棒性的特征。和正向业务不同,我们不会在特征设计层面,过分聚焦于正样本的区分度。比如绝大部分爬虫流量都是PC端带来的,“是否是PC”就是一个极强的特征。但一旦这种作弊没有继续攻击,模型的效果就大打折扣。因此更多会使用各个维度上计算与Normal分布的偏差、到Normal簇的距离...等。

实时过滤系统基本可以解决90%的问题。为了更好地拟合高级作弊,我们又引入了小时级别过滤系统,使用开销更大的特征与更复杂的模型。而且广告结算支持事后返款,可以使用小时级结果对实时流模型进行修正,用于结算与展示。当然,处置能力最终收敛于实时流过滤系统,会是我们更长期的追求。

此外,在线实时过滤系统可以让新同学快速上手迭代其中的组件,将不同同学的产出解耦,更客观的评价业务贡献。

3.3.2 淘客交易反作弊的处置

对于过滤系统判定作弊的淘客,我们首先冻结其佣金。搜集证据后下达处罚结果。并通过“预估佣金”、“异常特征”来对待处罚淘客进行分级处置。

此外,传统的处罚机制为月结,从媒体开始作弊到下达处罚有一定延迟。一方面不利于及时管控风险,另一方面会导致非主观恶意作弊淘客的强烈反弹,为提升管控的时效,减少淘客的损失,同时提升用户体验,我们在原有的月结机制基础上,增加周/天的处罚机制。

3.4 评价

对于整个流量反作弊系统,我们有4部分需要评价:1)在线有监督精度;2)在线有监督召回;3)离线无监督精度;4)离线无监督召回。

因为没有Ground Truth,为了客观评价在线有监督过滤系统的精度召回,我们建立了离线无监督样本库。使用离线无监督样本库的最终结果,作为在线有监督系统的Groud truth,就可以评估其分类效果。但也引入了后面2部分无监督评价问题。

3.4.1 有监督过滤系统的评价

在线与离线2者的关系如下图所示。基于纯无监督的挖掘体系,我们的底线是消灭3.2.1中提到的5种可感知异常流量中的作弊流量,终局则是消灭不可感知的作弊流量。通过天级别的事后信息引入,以无监督的方式对线上实时系统过滤结果进行修正,并将标签用于后续在线监督系统学习。

基于现有标签的AUC、KS、MAX-F1...等指标,会过分高估风控模型效果。例如,实时模型的AUC很容易高于0.99。然而这其中绝大多数的样本都来自于简单的爬虫、或傻瓜式疯狂点击,如下图离散分布的红点。在更高级的作弊上AUC可能不足0.8,如下图红圈中的样本。为了更客观地评价模型,我们引入了“样本库分级”,将“简单作弊”与“高级作弊”区分开。并通过结构化采样构造封闭评测集,指导模型迭代。

3.4.2 无监督精准评价

无监督系统的精准与召回评价一直是业内的难题。传统的评价方法是通过数据抽样,由专家进行标注进行评估。效率低下且非常主观。

为此我们借助淘系生态数据,为无监督系统引入了自动化评价体系。基于无效流量转化概率为0的假设,通过统计推断,得到模型在指定置信度下的精度指数下限。基于区间估计的精度推断方法,在后续专题文章中进行介绍。

3.4.3 无监督召回评价

真实环境下的召回评价,是难以定量的。除了大盘抽样巡检外,由于引入了完备的感知、洞察体系。将所有的异常流量,均归纳至一个风险池。无论何时有需要对流量进行处置(临时止血或迭代模型),我们都可以迅速定位到问题根源。于是将安全感最大化。

四、总结

高维数据下的异常检测、大规模图学习、机器学习可解释性、数据可视化方法...等,都是我们的重点研究方向。在我们看来,风控可能是当前机器学习领域,对算法鲁棒性和解释性要求最高、精度要求最极致、系统规模和时效性挑战最大、最能用钱衡量的工业级业务。这就需要我们具备卓越的业务数据洞察能力、工程架构能力,让研究成果转换成坚实的工业级解决方案。

本文重点介绍了我们在流量反作弊场景下所遇到的问题,以及相应的解决方案。希望通过这篇文章,可以让读者理解我们在流量反作弊领域所遇到的问题,以及解决问题的思路。

阿里妈妈风控团队集合了国内业界身经百战的“武林高手”们,利用阿里巴巴独特的数据积累,让AI的能力在与黑灰产持续的过招过程中得到进化和升华。打造攻守兼备的、有极致安全感的智能风控体系是我们不懈的追求。期待更多志同道合的同学加入我们。期待与您的交流,感谢阅读~

相关文章
|
1月前
|
机器学习/深度学习 算法 数据可视化
探索线性回归算法:从原理到实践
探索线性回归算法:从原理到实践【2月更文挑战第19天】
21 0
探索线性回归算法:从原理到实践
|
1月前
|
算法 C语言 C++
嵌入式PID算法理论+实践分析
嵌入式PID算法理论+实践分析
24 0
|
1月前
|
机器学习/深度学习 算法 搜索推荐
外卖平台推荐算法的优化与实践
外卖平台推荐算法的优化与实践
|
3月前
|
机器学习/深度学习 搜索推荐 算法
推荐系统算法的研究与实践:协同过滤、基于内容的推荐和深度学习推荐模型
推荐系统算法的研究与实践:协同过滤、基于内容的推荐和深度学习推荐模型
207 1
|
1月前
|
机器学习/深度学习 数据采集 存储
使用机器学习算法进行文本分类的方法与实践
本文将介绍使用机器学习算法进行文本分类的方法与实践。通过分析文本特征、选择合适的机器学习算法和构建有效的训练模型,可以实现准确和高效的文本分类任务。我们还将探讨如何处理文本数据预处理、特征提取和模型评估等方面的关键问题,以帮助读者更好地应用机器学习技术解决文本分类挑战。
|
2月前
|
算法 安全 数据处理
【国密算法】深入理解国密算法:原理、实践及注意事项
【国密算法】深入理解国密算法:原理、实践及注意事项
|
2月前
|
存储 算法 安全
【国密算法】国密算法在Java中的实践
【国密算法】国密算法在Java中的实践
|
2月前
|
缓存 Rust 算法
Rust中的数据结构与算法优化实践
在Rust编程语言中,优化数据结构与算法是提高程序性能的关键。本文首先介绍了Rust的特点,然后重点讨论了如何在Rust中优化数据结构和算法,包括使用标准库中的高效数据结构、自定义数据结构的优化技巧、算法选择与改进、以及Rust特性如所有权和借用检查器的应用。通过实际案例,我们将展示如何在Rust中实现更高效的数据结构与算法。
|
3月前
|
机器学习/深度学习 供应链 算法
智能供应链中的预测算法:理论与实践
智能供应链中的预测算法:理论与实践
84 1
|
3月前
|
机器学习/深度学习 人工智能 自动驾驶
强化学习算法在游戏、机器人和自动驾驶等领域的应用与实践
强化学习算法在游戏、机器人和自动驾驶等领域的应用与实践
138 0
强化学习算法在游戏、机器人和自动驾驶等领域的应用与实践