9种常用的机器学习算法实现

简介: 根据机器学习的任务或应用情况的不同,我们通常把机器学习分为三大类:

简介



根据机器学习的任务或应用情况的不同,我们通常把机器学习分为三大类:


1、监督学习(Supervised Learning,SL),这类算法的工作原理是使用带标签的训练数据来学习输入变量image.png转化为输出变量image.png的映射函数,换句话说就是求解方程image.png。进一步地,监督学习又可细分为如下三类:


  • 回归(Regression):预测一个值,如预测降雨量、房价等,较基础的算法有:Linear Regression
  • 分类(Classification):预测一个标签,如预测“生病”或“健康”,图片上是哪种动物等,较基础的算法有:Logistic Regression、Naive Bayes、K-Nearest Neighbors(KNN)


【另】:集成(Ensembling)也可以归类为监督学习的一种,它将多个单独较弱的机器学习模型的预测结合起来,以产生更准确的预测,较基础的算法有Bagging with Random Forests、Boosting with XGBoost


2、非监督学习(Unsupervised Learning,UL),这类算法的工作原理是从无标签的训练数据中学习数据的底层结构。进一步地,非监督学习又可细分为如下三类:


  • 关联(Association):发现集合中项目同时出现的概率,如通过分析超市购物篮,发现啤酒总是和尿片一起购买(啤酒与尿片的故事),较基础的算法有:Apriori
  • 聚类(Clustering):对数据进行分组,以便组内对象比组间对象更相似,较基础的算法有:K-Means
  • 降维(Dimensionality Reduction):减少数据集的变量数量,同时保证重要的信息不被丢失。降维可以通过特征提取方法和特征选择方法来实现,特征提取是执行从高维空间到低维空间的转换,特征选择是选择原始变量的子集,较基础的算法有:PCA


3、强化学习(Reinforcement Learning,DL),让agent根据当前环境状态,通过学习能够获得最大回报的行为来决定下一步的最佳行为。



实现



以上列出的算法都是简单常用的,基于scikit-learn可以仅用几行代码就完成模型训练、预测、评估和可视化。关于算法的原理知乎上有很多精彩的回答,这里不会赘述,仅给出代码的实现与可视化。


 Linear Regression


它为变量分配最佳权重,以创建一条直线或一个平面或更高维的超平面,使得预测值和真实值之间的误差最小化。具体原理参考:用人话讲明白线性回归LinearRegression - 化简可得的文章 - 知乎。下面以一元线性回归为例,给出代码实现。

image.png



▐  Logistic Regression


虽然写着回归,但实际上是一种二分类算法。它将数据拟合到logit函数中,所以称为logit回归。简单来说就是基于一组给定的变量,用logistic function来预测这个事件的概率,给出一个介于0和1之间的输出。具体原理参考:用人话讲明白逻辑回归Logistic regression - 化简可得的文章 - 知乎,下面给出代码的实现。


image.png


▐  Naive Bayes


朴素贝叶斯是一种基于贝叶斯定理的分类方法,它会假设一个类中的某个特征与其他特征无关。这个模型不仅非常简单,而且比许多高度复杂的分类方法表现得更好。具体原理参考:朴素贝叶斯算法原理小结 - 刘建平Pinard,下面给出代码的实现。


image.pngimage.gif


image.png

▐  K-Nearest Neighbors


这是用于分类和回归的机器学习算法(主要用于分类)。它考虑了不同的质心,并使用欧几里得函数来比较距离。接着分析结果并将每个点分类到组中,以优化它,使其与所有最接近的点一起放置。它使用k个最近邻的多数票对数据进行分类预测。具体原来参考:K近邻法(KNN)原理小结 - 刘建平Pinard,下面给出代码的实现。

image.png

▐  Decision Tree


遍历树,并将重要特征与确定的条件语句进行比较。它是降到左边的子分支还是降到右边的子分支取决于结果。通常,更重要的特性更接近根,它可以处理离散变量和连续变量。具体原理参考:深入浅出理解决策树算法(一)-核心思想 - 忆臻的文章 - 知乎,下面给出代码的实现。

image.png

▐  Random Forest


随机森林是决策树的集合。随机采样数据点构造树、随机采样特征子集分割,每棵树提供一个分类。得票最多的分类在森林中获胜,为数据点的最终分类。具体原来参考:独家 | 一文读懂随机森林的解释和实现 - 清华大学数据科学研究院的文章 - 知乎,下面给出代码的实现。


image.png

image.png

▐  Support Vector Machines


它将数据映射为空间中的点,使得不同类别的点可以被尽可能宽的间隔分隔开,对于待预测类别的数据,先将其映射至同一空间,并根据它落在间隔的哪一侧来得到对应的类别。具体原来参考:看了这篇文章你还不懂SVM你就来打我 - SMON的文章 - 知乎,下面给出代码实现。


image.png



import matplotlib.pyplot as pltimport numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn.datasets import make_classification
# SVMfrom sklearn import svm# 1. 准备数据svm_X_train, svm_y_train = make_classification(n_features=2, n_redundant=0, n_informative=2,                           random_state=1, n_clusters_per_class=1, n_classes=4)# 2. 构造训练与测试集l, r = svm_X_train[:, 0].min() - 1, svm_X_train[:, 0].max() + 1b, t = svm_X_train[:, 1].min() - 1,svm_X_train[:, 1].max() + 1n = 1000grid_x, grid_y = np.meshgrid(np.linspace(l, r, n), np.linspace(b, t, n))svm_X_test = np.column_stack((grid_x.ravel(), grid_y.ravel()))# 3. 训练模型# svm_model = RandomForestClassifier(max_depth=4)svm_model = svm.SVC(kernel='rbf', gamma=1, C=0.0001).fit(svm_X_train, svm_y_train)svm_model.fit(svm_X_train, svm_y_train)# 4. 预测数据svm_y_pred = svm_model.predict(svm_X_test)# 5. 可视化grid_z = svm_y_pred.reshape(grid_x.shape)plt.figure('SVM')plt.title('SVM')plt.pcolormesh(grid_x, grid_y, grid_z, cmap='Blues')plt.scatter(svm_X_train[:, 0], svm_X_train[:, 1], s=30, c=svm_y_train, cmap='pink')plt.show()


▐  K-Means


将数据划分到K个聚类簇中,使得每个数据点都属于离它最近的均值(即聚类中心,centroid)对应的集聚类簇。最终,具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。具体原理参考:用人话讲明白快速聚类kmeans - 化简可得的文章 - 知乎,下面给出代码的实现。


image.png



import matplotlib.pyplot as pltimport numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn.datasets.samples_generator import make_blobs
# K-means 任务为聚类 n_classes=5from sklearn.cluster import KMeans
# 1. 准备数据kmeans_X_data, kmeans_y_data = make_blobs(n_samples=500, centers=5, cluster_std=0.60, random_state=0)# 2. 训练模型kmeans_model = KMeans(n_clusters=5)kmeans_model.fit(kmeans_X_data)# 3. 预测模型kmeans_y_pred = kmeans_model.predict(kmeans_X_data)# 4. 可视化plt.figure('K-Means')plt.title('K-Means')plt.scatter(kmeans_X_data[:,0], kmeans_X_data[:, 1], s=50)plt.scatter(kmeans_X_data[:, 0], kmeans_X_data[:, 1], c=kmeans_y_pred, s=50, cmap='viridis')centers = kmeans_model.cluster_centers_plt.scatter(centers[:,0], centers[:, 1], c='red', s=80, marker='x')plt.show()


▐  PCA


一种常用的降维技术,顾名思义,PCA帮助我们找出数据的主要成分,主成分基本上是线性不相关的向量,用选出的k个主成分来表示数据,来达到降维的目的。具体原理参考:如何通俗易懂地讲解什么是 PCA 主成分分析?- 马同学的回答 - 知乎,下面给出代码实现。



import matplotlib.pyplot as pltimport numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn.datasets import make_classification
# PCAfrom sklearn.decomposition import PCAfrom sklearn.datasets import load_iris
# 1. 准备数据pca_data=load_iris()pca_X_data=pca_data.datapca_y_data=pca_data.target# 2. 训练模型, 维度为2pca_model=PCA(n_components=2)  # 3. 降维reduced_X=pca_model.fit_transform(pca_X_data)# 4. 可视化red_x,red_y=[],[]blue_x,blue_y=[],[]green_x,green_y=[],[]
for i in range(len(reduced_X)): if pca_y_data[i] ==0:  red_x.append(reduced_X[i][0])  red_y.append(reduced_X[i][1]) elif pca_y_data[i]==1:  blue_x.append(reduced_X[i][0])  blue_y.append(reduced_X[i][1]) else:  green_x.append(reduced_X[i][0])  green_y.append(reduced_X[i][1])
plt.figure('PCA')plt.title('PCA')plt.scatter(red_x,red_y,c='r')plt.scatter(blue_x,blue_y,c='b')plt.scatter(green_x,green_y,c='g')plt.show()



总结



至此,给出了常有的9种机器学习算法的实现,题主可以通过一些实际案例去进一步理解和熟悉算法。国外的Kaggle和阿里云天池都是获取项目经验的好途径。


推荐阅读:

https://zhuanlan.zhihu.com/p/72513104

https://zhuanlan.zhihu.com/p/139122386

https://www.cnblogs.com/pinard/p/6069267.html

https://www.cnblogs.com/pinard/p/6061661.html

https://zhuanlan.zhihu.com/p/26703300

https://zhuanlan.zhihu.com/p/51165358

https://zhuanlan.zhihu.com/p/49331510

https://zhuanlan.zhihu.com/p/75477709

https://www.zhihu.com/question/41120789/answer/481966094

相关文章
|
5月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
11月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1083 6
|
6月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
248 6
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
9月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
1575 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
9月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
225 14
|
8月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
155 0
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
10月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
253 2

热门文章

最新文章