【重磅】互联网金融生态系统系列报告:金融机构如何驾驭大数据?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

昨日,波士顿咨询公司发布《互联网金融生态系统2020系列报告之大数据篇——回归“价值”本源:金融机构如何驾驭大数据?》,大数据文摘第一时间得到授权,分享给各位读者。


回复“波士顿咨询”可一并下载3篇系列重磅文章:

《互联网金融生态系统2020系列报告之大数据篇——回归“价值”本源:金融机构如何驾驭大数据》

《BCG_互联网金融生态2020——新动力、新格局、新战略》

《张越:变革时代新战略、新工具》


互联网金融生态系统2020系列报告之大数据篇——回归“价值”本源:金融机构如何驾驭大数据


作者:

邓俊豪(Tjun Tang):波士顿咨询公司资深合伙人兼董事总经理、BCG亚太区金融机构专项业务负责人,常驻香港办公室。tang.tjun@bcg.com。


张越:波士顿咨询公司董事经理,常驻北京办公室。zhang.yue@bcg.com。


何大勇:波士顿咨询公司合伙人兼董事总经理、BCG金融业智库负责人,常驻北京办公室。he.david@bcg.com。


内容概览


横看成岭侧成峰,

远近高低各不同。

不识庐山真面目,

只缘身在此山中。

—苏轼《题西林壁》


无论是接受还是拒绝,中国金融业的大数据时代正在呼啸而至。据调查,经过多年的发展与积累,目前很多国内金融机构的数据量级已经达到100TB以上。而且,非结构化数据量正在以更快的速度增长。在高数据强度的金融行业,这一发展激起了巨大的想象空间。然而,要抓住这一机遇并非易事。


基于多年的研究与全球项目实操经验,波士顿咨询公司(BCG)系统梳理了大数据在全球金融行业的发展现状、潜在应用、关键瓶颈及应对方案,旨在协助金融机构从价值的角度更好地理解大数据,并在大数据迅速渗入金融业务各个层面的当下抓住发展机遇。


本报告主要观点:

  • 成就大数据的不仅是传统定义中的“三个V”,即数量(Volume)、速度(Velocity)和种类(Variety)。对金融机构而言,更重要的是第四个V,即价值(Value)。大数据的价值不仅体现在对金融机构财务相关指标的直接影响上,也体现在对商业模式变革的推动能力上,即不断引发传统金融机构的内嵌式变革。


  • 大数据从四个方面改变了金融机构传统的数据运作方式,从而实现了巨大的商业价值。这四个方面(“四个C”)包括:数据质量的兼容性(Compatibility)、数据运用的关联性(Connectedness)、数据分析的成本(Cost)以及数据价值的转化(Capitalization)。


  • 大数据在金融业的应用场景正在逐步拓展。在海外,大数据已经在金融行业的风险控制、运营管理、销售支持和商业模式创新等领域得到了全面尝试。在国内,金融机构对大数据的应用还基本处于起步阶段。数据整合和部门协调等关键环节的挑战仍是阻碍金融机构将数据转化为价值的主要瓶颈。


  • 数据技术与数据经济的发展是持续实现大数据价值的支撑。深度应用正在将传统IT从“后端”不断推向“前台”,而存量架构与创新模块的有效整合是传统金融机构在技术层面所面临的主要挑战。此外,数据生态的发展演进有其显著的社会特征。作为其中的一员,金融机构在促进数据经济的发展上任重道远。


  • 为了驾驭大数据,国内金融机构要在技术的基础上着重引入以价值为导向的管理视角,最终形成自上而下的内嵌式变革。其中的三个关键点(“TMT”)包括:团队(Team)、机制(Mechanism)和思维(Thinking)。


1. 价值导向与内嵌式变革—BCG对大数据的理解

“让数据发声!”—随着大数据时代的来临,这个声音正在变得日益响亮。为了在喧嚣背后探寻本质,我们的讨论将从大数据的定义开始。


1.1 成就大数据的“第四个V


大数据是什么?在这个问题上,国内目前常用的是“3V”定义,即数量(Volume)、速度(Velocity)和种类(Variety)。


虽然有着这样的定义,但人们从未停止讨论什么才是成就大数据的“关键节点”。人们热议的焦点之一是“到底多大才算是大数据?”其实这个问题在“量”的层面上并没有绝对的标准,因为“量”的大小是相对于特定时期的技术处理和分析能力而言的。在上个世纪90年代,10GB的数据需要当时计算能力一流的计算机处理几个小时,而这个量现在只是一台普通智能手机存储量的一半而已。在这个层面上颇具影响力的说法是,当“全量数据”取代了“样本数据”时,人们就拥有了大数据。


另外一个成为讨论焦点的问题是,今天的海量数据都来源于何处。在商业环境中,企业过去最关注的是ERPEnterprise Resource Planning)和CRMCustomerRelationship Management)系统中的数据。这些数据的共性在于,它们都是由一个机构有意识、有目的地收集到的数据,而且基本上都是结构化数据。随着互联网的深入普及,特别是移动互联网的爆发式增长,人机互动所产生的数据已经成为了另一个重要的数据来源,比如人们在互联网世界中留下的各种“数据足迹”。但所有这些都还不是构成“大量数据”的主体。机器之间交互处理时沉淀下来的数据才是使数据量级实现跨越式增长的主要原因。“物联网”是当前人们将现实世界数据化的最时髦的代名词。海量的数据就是以这样的方式源源不断地产生和积累。(参阅图1


3V”的定义专注于对数据本身的特征进行描述。然而,是否是量级庞大、实时传输、格式多样的数据就是大数据?


BCG认为,成就大数据的关键点在于“第四个V”,即价值(Value)。当量级庞大、实时传输、格式多样的全量数据通过某种手段得到利用并创造出商业价值,而且能够进一步推动商业模式的变革时,大数据才真正诞生。(参阅图2


1.2 变革中的数据运作与数据推动的内嵌式变革


多元化格式的数据已呈海量爆发,人类分析、利用数据的能力也日益精进,我们已经能够从大数据中创造出不同于传统数据挖掘的价值。那么,大数据带来的“大价值”究竟是如何产生的?


无论是在金融企业还是非金融企业中,数据应用及业务创新的生命周期都包含五个阶段:业务定义需求;IT部门获取并整合数据;数据科学家构建并完善算法与模型;IT发布新洞察;业务应用并衡量洞察的实际成效。在今天的大数据环境下,生命周期仍维持原样,而唯一变化的是“数据科学家”在生命周期中所扮演的角色。大数据将允许其运用各种新的算法与技术手段,帮助IT不断挖掘新的关联洞察,更好地满足业务需求。


因此,BCG认为,大数据改变的并不是传统数据的生命周期,而是具体的运作模式。在传统的数据基础和技术环境下,这样的周期可能要经历一年乃至更长的时间。但是有了现在的数据量和技术,机构可能只需几周甚至更短的时间就能走完这个生命周期。新的数据运作模式使快速、低成本的试错成为可能。这样,商业机构就有条件关注过去由于种种原因而被忽略的大量“小机会”,并将这些“小机会”累积形成“大价值”。(参阅图3


具体而言,与传统的数据应用相比,大数据在四个方面(“4C”)改变了传统数据的运作模式,为机构带来了新的价值。


1.2.1 数据质量的兼容性(Compatibility):大数据通过“量”提升了数据分析对“质”的宽容度

在“小数据”时代,数据的获取门槛相对较高,这就导致“样本思维”占据统治地位。人们大多是通过抽样和截取的方式来捕获数据。同时,人们分析数据的手段和能力也相对有限。为了保证分析结果的准确性,人们通常会有意识地收集可量化的、清洁的、准确的数据,对数据的“质”提出了很高的要求。而在大数据时代,“全量思维”得到了用武之地,人们有条件去获取多维度、全过程的数据。但在海量数据出现后,数据的清洗与验证几乎成为了不可能的事。正是这样的困境催生了数据应用的新视角与新方法。类似于分布式技术的新算法使数据的“量”可以弥补“质”的不足,从而大大提升了数据分析对于数据质量的兼容能力。


1.2.2 数据运用的关联性(Connectedness):大数据使技术与算法从“静态”走向“持续”

在大数据时代,对“全量”的追求使“实时”变得异常重要,而这一点也不仅仅只体现在数据采集阶段。在云计算、流处理和内存分析等技术的支撑下,一系列新的算法使实时分析成为可能。人们还可以通过使用持续的增量数据来优化分析结果。在这些因素的共同作用下,人们一贯以来对“因果关系”的追求开始松动,而“相关关系”正在逐步获得一席之地。


1.2.3 数据分析的成本(Cost):大数据降低了数据分析的成本门槛

大数据改变了数据处理资源稀缺的局面。过去,数据挖掘往往意味着不菲的投入。因此,企业希望能够从数据中发掘出“大机会”,或是将有限的数据处理资源投入到有可能产生大机会的“大客户、大项目”中去,以此获得健康的投入产出比。而在大数据时代,数据处理的成本不断下降,数据中大量存在的“小机会”得见天日。每个机会本身带来的商业价值可能并不可观,但是累积起来就会实现质的飞跃。所以,大数据往往并非意味着“大机会”,而是“大量机会”。


1.2.4 数据价值的转化(Capitalization):大数据实现了从数据到价值的高效转化

在《互联网金融生态系统2020:新动力、新格局、新战略》报告中,我们探讨了传统金融机构在大变革时代所需采取的新战略思考框架,即适应型战略。采取适应型战略有助于企业构筑以下五大优势:试错优势、触角优势、组织优势、系统优势和社会优势,而大数据将为金融机构建立这些优势提供新的工具和动力。从数据到价值的转化与机构的整体转型相辅相成,“内嵌式变革”由此而生。


例如,金融机构传统做法中按部就班的长周期模式(从规划、立项、收集数据到分析、试点、落地、总结)不再适用。快速试错、宽进严出成为了实现大数据价值的关键:以低成本的方式大量尝试大数据中蕴藏的海量机会,一旦发现某些有价值的规律,马上进行商业化推广,否则果断退出。此外,大数据为金融机构打造“触角优势”提供了新的工具,使其能够更加灵敏地感知商业环境,更加顺畅地搭建反馈闭环。此外,数据的聚合与共享为金融机构搭建生态系统提供了新的场景与动力。(参阅图4



2. 应用场景与基础设施—纵览海内外金融机构的大数据发展实践


金融行业在发展大数据能力方面具有天然优势:受行业特性影响,金融机构在开展业务的过程中积累了海量的高价值数据,其中包括客户身份、资产负债情况、资金收付交易等数据。以银行业为例,其数据强度高踞各行业之首—银行业每创收100万美元,平均就会产生820GB的数据。(参阅图5


2.1 大数据的金融应用场景正在逐步拓展


大数据发出的声音已经在金融行业全面响起。作为行业中的“巨无霸”,银行业与保险业对大数据的应用尤其可圈可点。


2.1.1 海外实践:全面尝试

2.1.1.1 银行是金融行业中发展大数据能力的“领军者”

在发展大数据能力方面,银行业堪称是“领军者”。纵观银行业的六个主要业务板块(零售银行、公司银行、资本市场、交易银行、资产管理、财富管理),每个业务板块都可以借助大数据来更深入地了解客户,并为其制定更具针对性的价值主张,同时提升风险管理能力。其中,大数据在零售银行和交易银行业务板块中的应用潜力尤为可观。(参阅图6


BCG通过研究发现,海外银行在大数据能力的发展方面基本处于三个阶段:大约三分之一的银行还处在思考大数据、理解大数据、制定大数据战略及实施路径的起点阶段。还有三分之一的银行向前发展到了尝试阶段,也就是按照规划出的路径和方案,通过试点项目进行测验,甄选出许多有价值的小机会,并且不停地进行试错和调整。而另外三分之一左右的银行则已经跨越了尝试阶段。基于多年的试错经验,他们已经识别出几个较大的机会,并且已经成功地将这些机会转化为可持续的商业价值。而且这些银行已经将匹配大数据的工作方式嵌入到组织当中。他们正在成熟运用先进的分析手段,并且不断获得新的商业洞察。(参阅图7


银行业应用举例1:将大数据技术应用到信贷风险控制领域。在美国,一家互联网信用评估机构已成为多家银行在个人信贷风险评估方面的好帮手。该机构通过分析客户在各个社交平台(如FacebookTwitter)留下的数据,对银行的信贷申请客户进行风险评估,并将结果卖给银行。银行将这家机构的评估结果与内部评估相结合,从而形成更完善更准确的违约评估。这样的做法既帮助银行降低了风险成本,同时也为银行带来了风险定价方面的竞争优势。


相较于零售银行业务,公司银行业务对大数据的应用似乎缺乏亮点。但实际上,大数据在公司银行业务的风险领域正在发挥着前所未有的作用。在传统方法中,银行对企业客户的违约风险评估多是基于过往的营业数据和信用信息。这种方式的最大弊端就是缺少前瞻性,因为影响企业违约的重要因素并不仅仅只是企业自身的经营状况,还包括行业的整体发展状况,正所谓“覆巢之下,焉有完卵”。但要进行这样的分析往往需要大量的资源投入,因此在数据处理资源稀缺的环境下无法得到广泛应用,而大数据手段则大幅减少了此类分析对资源的需求。西班牙一家大型银行正是利用大数据来为企业客户提供全面深入的信用风险分析。该行首先识别出影响行业发展的主要因素,然后对这些因素一一进行模拟,以测试各种事件对其客户业务发展的潜在影响,并综合评判每个企业客户的违约风险。这样的做法不仅成本低,而且对风险评估的速度快,同时显著提升了评估的准确性。


银行业应用举例2:用大数据为客户制定差异化产品和营销方案。在零售银行业务中,通过数据分析来判断客户行为并匹配营销手段并不是一件新鲜事。但大数据为精准营销提供了广阔的创新空间。例如,海外银行开始围绕客户的“人生大事”进行交叉销售。这些银行对客户的交易数据进行分析,由此推算出客户经历“人生大事”的大致节点。人生中的这些重要时刻往往能够激发客户对高价值金融产品的购买意愿。一家澳大利亚银行通过大数据分析发现,家中即将有婴儿诞生的客户对寿险产品的潜在需求最大。通过对客户的银行卡交易数据进行分析,银行很容易识别出即将添丁的家庭:在这样的家庭中,准妈妈会开始购买某些药品,而婴儿相关产品的消费会不断出现。该行面向这一人群推出定制化的营销活动,获得了客户的积极响应,从而大幅提高了交叉销售的成功率。


客户细分早已在银行业得到广泛应用,但细分维度往往大同小异,包括收入水平、年龄、职业等等。自从开始尝试大数据手段之后,银行的客户细分维度出现了突破。例如,西班牙的一家银行从FacebookTwitter等社交平台上直接抓取数据来分析客户的业余爱好。该行把客户细分为常旅客、足球爱好者、高尔夫爱好者等类别。通过分析,该行发现高尔夫球爱好者对银行的利润度贡献最高,而足球爱好者对银行的忠诚度最高。此外,通过分析,该行还发现了另外一个小客群:“败家族”,即财富水平不高、但消费行为奢侈的人群。这个客群由于人数不多,而且当前的财富水平尚未超越贵宾客户的门槛,因此往往被银行所忽略。但分析显示这一人群能够为银行带来可观的利润,而且颇具成长潜力,因此该行决定将这些客户升级为贵宾客户,深入挖掘其潜在价值。


在对公业务中,银行同样可以借助大数据形成更有价值的客户细分。例如,在BCG与一家加拿大银行的合作项目中,项目组利用大数据分析技术将所有公司客户按照行业和企业规模进行细分,一共建立了上百个细分客户群。不难想象,如果没有大数据的支持,这样深入的细分是很难实现的。然后,项目组在每个细分群中找出标杆企业,分析其银行产品组合,并将该细分群中其他客户的银行产品组合与标杆企业进行比对,从而识别出差距和潜在的营销机会。项目组将这些分析结果与该行的对公客户经理进行分享,帮助他们利用这些发现来制定更具针对性的销售计划和话术,并取得了良好的效果。客户对这种新的销售方式也十分欢迎,因为他们可以从中了解到同行的财务状况和金融安排,有助于对自身的行业地位与发展空间进行判断。


银行业应用举例3:用大数据为优化银行运营提供决策基础。大数据不仅能在前台与中台大显身手,也能惠及后台运营领域。在互联网金融风生水起的当下,“O2O”(Online To Offline)成为了银行的热点话题。哪些客户适合线上渠道?哪些客户不愿“触网”?BCG曾帮助西班牙一家银行通过大数据技术应用对这些问题进行了解答。项目组对16个既可以在网点也可以在网络与移动渠道上完成的关键运营活动展开分析,建立了12个月的时间回溯深度,把客户群体和运营活动按照网点使用强度以及非网点渠道使用潜力进行细分。分析结果显示,大约66%的交易活动对网点的使用强度较高,但同时对非网点渠道的使用潜力也很高,因此可以从网点迁移到网络或移动渠道。项目组在客户细分中发现,年轻客户、老年客户以及高端客户在运营活动迁移方面潜力最大,可以优先作为渠道迁徙的对象。通过这样的运营调整,大数据帮助银行在引导客户转移、减轻网点压力的同时保障了客户体验。


BCG还曾利用专有的大数据分析工具NetworkMax,帮助一家澳大利亚银行优化网点布局。虽然银行客户的线上活动日渐增多,但金融业的铁律在互联网时代依然适用,也就是说在客户身边设立实体网点仍然是金融机构的竞争优势。然而,网点的运营成本往往不菲,如何实现网点资源的价值最大化成为了每家银行面临的问题。在该项目中,项目组结合银行的内部数据(包括现有的网点分布和业绩状况等)和外部数据(如各个地区的人口数量、人口结构、收入水平等),对350多个区域进行了评估,并按照主要产品系列为每个区域制定市场份额预测。项目组还通过对市场份额的驱动因素进行模拟,得出在现有网点数量不变的情况下该行网点的理想布局图。该行根据项目组的建议对网点布局进行了调整,并取得了良好的成效。这个案例可以为许多银行带来启示:首先,银行十分清楚自身的网点布局,有关网点的经营业绩和地址的信息全量存在于银行的数据库中。其次,有关一个地区的人口数量、人口结构、收入水平等数据都是可以公开获取的数据。通过应用大数据技术来把这两组数据结合在一起,就可以帮助银行实现网点布局的优化。BCG基于大数据技术而研发的Network Max正是用来解决类似问题的工具。(参阅图8


银行业应用举例4:创新商业模式,用大数据拓展中间收入。过去,坐拥海量数据的银行考虑的是如何使用数据来服务其核心业务。而如今,很多银行已经走得更远。他们开始考虑如何把数据直接变成新产品并用来实现商业模式,进而直接创造收入。例如,澳大利亚一家大型银行通过分析支付数据来了解其零售客户的“消费路径”,即客户进行日常消费时的典型顺序,包括客户的购物地点、购买内容和购物顺序,并对其中的关联进行分析。该银行将这些分析结果销售给公司客户(比如零售业客户),帮助客户更准确地判断合适的产品广告投放地点以及适合在该地点进行推广的产品。这些公司客户过去往往需要花费大量金钱向市场调研公司购买此类数据,但如今他们可以花少得多的钱向自己的银行购买这些分析结果,而且银行所提供的此类数据也要可靠得多。银行通过这种方式获得了传统业务之外的收入。更重要的是,银行通过这样的创新为客户提供了增值服务,从而大大增强了客户粘性。


2.1.1.2 大数据正在保险业全面渗透

与银行业在大数据应用方面的高歌猛进相比,保险业的相关动作稍显迟疑。从全球保险业来看,美国财产保险业对大数据的应用最为广泛深入,医疗保险紧随其后,寿险对大数据的应用则相对滞后。与美国竞争对手相比,欧洲保险机构在大数据能力的发展水平上存在一到两年的差距。尽管如此,大数据在保险行业主要价值链环节的潜在应用也已逐渐清晰。(参阅图9


纵观海外保险机构,我们发现领先险企正在定价、营销、保单管理、理赔和反欺诈等不同领域对大数据应用进行积极的尝试和创新。这些创新对于保险业的商业与运营模式产生了革命性的影响。(参阅图10


保险业应用举例1:用大数据预防或减少赔付。赔付会直接影响保险企业的利润,对于赔付的管理也一直是险企的关注点。而赔付中的“异常值”(即超大额赔付)是赔付额的主要驱动因素之一。以某海外险企的工伤补偿为例,不到20%的“异常值”带来了超过80%的赔付费用。但是,这些高额赔付的案例往往早有端倪,如果能够及早干预就可以在很大程度上控制事态的发展。比如,关注伤者的疾病发展过程并及时建议跟进治疗以避免慢性疾病的发生,尽早建议用人单位进行工作调整以减少误工等等。


大数据能够为险企及时、高效地采取干预措施提供良好的支持。一家领先的美国保险集团通过结合内部、第三方和社交媒体数据进行早期异常值检测,及时采取干预措施,从而使平均索赔费用下降了20%。该集团的预测模型使用了约1.4亿个数据点,其中既包括了客户的个人数据(健康状况、人口特征、雇主信息等),也包括了集团的内部数据(过往的理赔信息和已经采取的医疗干预信息等)。此外,这个模型可以随着新数据的加入而不断进行调整,以提升其准确性。


欺诈是影响赔付的另一个重要因素。而借助大数据手段,险企可以显著提升反欺诈的准确性与及时性。在美国,一家汽车保险公司通过大数据分析识别出诈骗规律,从而使车险诈骗案例减少了30%,误报率减少了50%,整体索赔成本降低了2-3%。一家大型财险公司通过大数据分析,发现了赔付总额高达2.3亿美元的诈骗嫌疑案,并将识别欺诈的时间提前了117天。


保险业应用举例2:用大数据支持差异化定价。对保费的定义是基于对一个群体的风险判断,而大数据无疑为这样的风险判断带来了前所未有的创新。一家澳大利亚保险公司通过分析客户的购物筐数据来预测驾驶风险。分析显示,饮用大量牛奶并食用大量红肉的客户具有较低的驾驶风险,而食用大量意大利面和米饭并在夜间开车和饮酒的客户则是高风险人群。英国保险公司英杰华集团(Aviva)运用网络数据来为保费设定提供支持。网络数据分析有效帮助该公司识别出申请者的潜在健康隐患及风险,其准确程度不亚于验血和尿检。


此外,大数据还能帮助险企优化定价体系。出于定价原因而导致价值流失有多种情况,比如在价格方面过于“一刀切”、当客户停止购买其中一种产品后还在延续捆绑折扣、不能及时更新定价、销售团队在提供折扣方面缺乏纪律性等。而大数据分析可以帮助险企及时、准确地发现问题并予以纠正,从而防止价值“渗漏”。


保险业应用举例3:用大数据实现差异化营销。大数据技术正在使客户细分不断走向深入,并日益成为精准营销的有力支撑。一家英国保险公司通过整合多元化的海量数据对5千多位客户进行了细分。在此基础上,该公司制定了高度差异化的营销和客户维护方案,最终在目标客群中收获了10倍的价值,并节省了近1亿英镑的成本。


此外,大数据正在为险企揭示营销工作中一些根深蒂固的误区。例如,许多销售人员认为涨价是客户流失的主要原因,于是竭力使用价格手段来留住客户,从而对利润造成了影响。然而,一家险企的大数据分析显示仅有三分之一左右的客户流失与价格有关。因此,采用更经济有效且具有差异性的方式来挽留客户就成为了海外险企保护价值的一个重要抓手。


2.1.2 国内现状:亟待破冰

在国内,大数据的发展可谓风起云涌。这样的热潮同样波及到金融行业,众多金融机构纷纷布局。以银行业为例,在大数据发展方面最为活跃的群体当属股份制银行,而大数据应用则主要集中在客户营销、产品创新、风险控制和运营优化等领域。例如,光大银行研发了“阳光理财”资产配置平台(APP)来整合数据,对客户投资需求进行细分,并设计了与之匹配的资产配置方案以支持营销。光大银行还推出基于大数据技术的风险预警平台以提升风控水平。此外,该行还基于大数据Hadoop技术构建起核心历史数据查询平台,使以往需要3-4天的查询时间缩短到当日即可完成,从而显著提升了运营效率。民生银行通过大数据分析来定义营销举措并防止客户流失。中信银行与银联商务合作开发出基于商户信息和POS流水交易数据进行风控的“POS贷”。


国内保险行业有三个经典“痛点”:与客户接触频率低,因而难以进行场景营销;数据基础差,从而限制了精算能力,进而对产品创新产生制约;运营整合难,从而影响了成本和客户体验。而大数据无疑为解决这些问题带来了契机。多家险企已经进行了布局,主要领域包括产品创新、风险控制和运营优化等。例如,淘宝的“运费险”保费低,购买频率高,理赔快。泰康人寿联手阿里小微金融服务集团推出国内首个针对电子商务创业人群的“乐业保”,并与可穿戴设备制造商咕咚合作推出互动式保险服务“活力计划”。平安借助金融集团的数据优势,通过分析信用卡的交易数据识别出车险的高风险人群。太平洋保险应用“大云平移”技术在其官方微信平台正式推出“大数据客户体验官(DEO)”概念,旨在提升运营与服务质量,优化客户体验。


保险业基于大数据的创新层出不穷,但其中最具突破性的发展当属2014年由中国保险保障基金有限责任公司出资20亿元人民币成立的大数据公司—中国保险信息技术管理有限责任公司,其意义在于催生出中国保险行业的数据共享平台。数据的整合与共享是发展大数据的基础,而这一点却是任何险企都难以独自实现的。这样的平台必将成为整个行业在大数据发展方面的一个有力支撑。


虽然已有诸多举措,但金融行业的大数据发展往往被形容为“雷声大、雨点小”,意指金融机构虽然投入不菲,但市场可感知的效果却十分有限。究竟是什么原因导致这一局面的产生?我们在与众多金融机构的接触过程中观察到三个阻碍数据转变为价值的现象:


数据虽多,但整合困难。国内金融机构虽然同样坐拥海量数据,但其数据的存在状态反映了整个组织的现状,即“部门分制”。数据在组织内部处于割裂状态—业务条线、职能部门、渠道部门、风险部门等各个分支机构往往是数据的真正拥有者,而这些拥有者之间却常常缺乏顺畅的共享机制。然而,成就大数据的是数据的“全量”,这就要求金融机构内部能够实现高度的数据共享与整合。这样的矛盾导致金融机构中的海量数据往往处于分散和“睡眠”的状态。虽然金融机构拥有的数据量“富可敌国”,但到真正利用时却“捉襟见肘”。


想法虽多,但动手困难。面对自己拥有的海量数据,金融机构真正敢“碰”的却很少。许多金融机构担心触犯监管或法律底线,或者担心擅自使用数据会侵犯客户的隐私权,又或是担心数据处理不当可能会给机构带来声誉风险和业务风险。因此,这些机构虽然积累了大量数据,并对应用模式进行了思考,但最终仍处于隔河观望的状态,难以付诸行动。


海外金融机构也曾经面临同样的问题。在与海外金融机构的合作中,我们给出的建议十分简单:与数据拥有者坦诚沟通并征询他们的许可。BCG的大量项目经验表明,许多客户对于自己的数据被使用的接受度远比金融机构想象得要高。


资源虽多,但协调困难。“技术部门不作为!”“业务说不清到底要什么!”—这样的相互指责在很多金融机构的业务部门与技术部门之间都曾出现。许多大数据项目就是在这种不顺畅的沟通中“夭折”,而不成功的经验只会加深双方的矛盾,导致新的合作更加艰难。这样的恶性循环在很多机构重复上演。我们发现,复合型人才的匮乏、合作机制的缺失以及工作方法的不当往往是造成这一局面的主要原因。


2.2 大数据要求金融机构重新审视自己的基础设施与环境


2.2.1 数据技术:融合提升

金融行业的数据强度在一定程度上决定了金融机构的技术强度。以银行业为例,在海外成熟市场,银行平均将营业收入的8%左右投入IT系统建设;而这一比例在国内稍低,但也可达到3%左右。如此重金打造的技术基础设施在大数据时代却面临着全面优化升级的挑战,这是因为数据的采集、存储和处理在大数据环境下发生了质的变化:日益开放的数据采集冲击着传统的结构化数据基础,常规的数据清洗在大数据面前失去了意义,海量数据的存储需要低成本的基础设施,实时性的分析要求新的数据处理技术......然而,挑战背后必有机遇。大数据同时为传统金融机构打造差异化竞争优势带来了宝贵的契机。那么,金融机构如何才能在技术层面上驾驭大数据时代?BCG认为,金融机构需要理解大数据分析的四个层次,关注13项核心技术,并做好两个决策。


大数据分析的四个层次及十三项技术:数据经过层层晋级成为可以指导行动的智慧,而技术在这一过程中贯穿始终。(参阅图11


数据收集与存储层:这一层是基础所在。数据从各个渠道以各种形态涌入,其中包括结构化数据(如交易信息)、半结构化数据(如日志信息)、非结构化数据(如社交信息、多媒体、地理位置等信息)等。在这个层面上,数据被实时和非实时地清理、加工,并被归档存储为有效信息以供后续的分析处理。


o 结构化数据集成:即便是在大数据时代,结构化数据依然举足轻重。结构化数据的集成仍然是大数据技术体系中的重要组成部分,这样的技术目前已经非常成熟。


o 非结构化数据集成:为了满足不同业务场景的数据调用和分析需求,在大数据体系中需要融入能够应对数据的多样性与多时效性特点的集成技术。


o 分布式存储:与常见的集中式存储技术不同,分布式存储技术并不是将数据存储在某个或多个特定的节点上,而是通过网络调用企业中每台机器上的磁盘空间,并将这些分散的存储资源构成一个虚拟的存储设备,为大规模的数据存储需求提供了低成本的手段。


o 流计算:由于业务发展不断提速,业务流程也日渐复杂,我们的注意力日益集中在“数据流”而非“数据集”上。决策者需要的架构应能处理随时发生的数据流,而当前的数据库技术并不适合数据流处理。


o 并行计算:并行计算能够充分利用各种计算和存储资源,把计算分布到多个计算节点上,再在指定节点上将计算结果汇总输出,轻松实现针对TBPB级数据分析的秒级响应。


o 分布式计算:如果在分布式的数据环境中工作并希望在很短的时间内处理数据,这就需要分布式处理。在分布式处理领域广为人知的一个例子就是Hadoop


o 内存计算:一般而言,内存访问速度要比磁盘访问速度快几百倍甚至上千倍。内存计算同时利用多个节点的计算能力和内存容量,CPU直接从内存而非磁盘上读取数据并对数据进行计算。内存计算是对传统数据处理方式的一种加速,是实现大数据分析的关键应用技术。


信息整合层:这一层是将数据转换为信息的关键。在这个层面上需要对数据进行去噪和增强处理,完成关系型信息和非关系型信息在一定程度上的整合。


o 关系型信息整合:关系型数据库发展已经相对成熟,具有良好的可扩展能力和较高的处理能力。


o 非关系信息整合:传统关系型数据库已无法满足需求,非结构化数据库不仅需要可以处理结构化数据,而且应当更适合处理非结构化数据(如文本、多媒体等信息)。


知识发现层:人工智能和数据挖掘技术在这一层面上大显身手,对在上一个层面整合好的信息进行分解、提炼,从中找出对目标对象有价值的信息点,完成从信息到知识的转化。


o 数据沙箱:按需收集各种实验数据,建立业务实验模型,是大数据架构下用于探索业务数据的一个分析平台。


o 实时决策:在不影响用户体验的情况下,从一组备选方案中选择一个合适的业务决策。


o 机器学习:这是大数据非常重要的能力,从信息反馈中获取新的知识或技能,重新组织已有的知识结构,并使之不断改善自身性能。


智慧汲取层:作为行动指导的洞察就诞生于这一层面。借助数据可视化工具,将经验、判断与知识相融合,使数据蜕变为智慧,开始为商业价值的创造提供指导。


o 数据洞察:借助数据可视化工具可以从知识中发现智慧,借助叙事可视化工具可以以独特的方式探索数据,而借助探索性可视化描述工具可以帮助决策者和分析师挖掘不同数据之间的联系—这是一种可视化的洞察力。


为了将大数据技术融入到自己现有的技术生态中,传统金融机构特别需要在基础设施和IT架构两大问题上进行权衡。(参阅图12


基础设施:是否“在云端”以及如何“在云端”是众多传统金融机构在大数据时代需要做出的一个核心技术决策。从理论上来说,金融机构可以选择云端、本地或混合模式。如果选择云端,金融机构还需要在公共云和私有云之间进行选择。而在实践中,这样的决策并不容易,因为这不仅仅涉及到技术问题。对数据的掌控是金融机构安身立命的根本,而如何平衡风险控制与成本效率是这个决策的关键点。


IT架构:大数据的生命周期要求传统金融机构的IT架构对新的技术要求进行全链条的接纳:获取大数据源,建设大数据平台进行存储和处理,并开发基于大数据分析的创新应用。这一切对于历史演进而成的庞大复杂的存量架构无疑是一个巨大的挑战。


2.2.2 数据经济:尚未破题

当我们把数据看作是继土地、劳动力、资金之后的第四种生产资料时,就再也无法回避大数据所涉及的经济维度,也就是数据的所有权问题、定价问题和交易规则问题。纵览海内外,这些核心问题尚未得到一劳永逸的解决。然而,不断涌现的创新尝试无疑正在为这些核心问题寻找解决手段,使数据经济得以蹒跚运行。例如,数据中间商、数据汇聚商、价值链数据共享平台等都在努力使数据有理、有序、有价地得以共享。


在国内,传统金融机构同样是数据的拥有者之一。但要真正源源不断地汲取大数据所蕴含的价值,金融机构需要以开放的思维与整个数据生态有效对接。而构建这样的生态优势的出发点就是理解这个生态本身。在国内,这样的生态正在快速成长。传统金融机构不仅可以获益于这样的发展,更可以参与到这样的发展之中。


3. 超越技术的管理视角—金融机构驾驭大数据的三个关键点


金融业虽然坐拥海量数据,但目前真正得到利用的数据仅为冰山一角。BCG多年的项目经验显示,金融机构对数据的实际利用率仅为34%,从而导致大量数据荒地的出现以及大量潜在机会处于沉睡状态。问题到底出在哪里?


为此,BCG对部分典型金融机构客户进行了调研。调查结果显示,从数据到价值的转化过程包含了七大步骤,其中“许可和信任”以及“协调”是关键瓶颈。(参阅图13


  • 步骤一:数据收集。与内部数据及外部数据形成对接,以获得丰富、全面的数据。


  • 步骤二:许可和信任。获得客户的许可和信任,同意企业在不透露其个人信息的前提下对其信息进行整合、分析和应用。


  • 步骤三:储存和处理技术。搭建合适的IT构架,以有效整理、存储和调用数据。


  • 步骤四:数据科学。识别合适的分析工具,以进行大数据分析。


  • 步骤五:协调。理解业务端需求,并将这些需求转化为具体的问题,指引技术部门和分析部门提供基础设施支持及数据分析工作。


  • 步骤六:行动洞察力。正确解读数据分析结果,将答案转化为行动变革、产品开发和客户发展方案。


  • 步骤七:嵌入式变革。将大数据分析和应用融入到整个机构组织的日常运作中,并确保每位员工都能参与实施变革。


这样的调研结果让我们深刻认识到,掣肘大数据在金融机构发展的关键因素存在于管理层面,而非技术层面。BCG根据自身在大数据和金融行业的咨询经验,总结了金融机构驾驭大数据的三个关键点(“TMT”),包括:团队(Team)、机制(Mechanism)和思维(Thinking)。在这三个关键点上进行突破应成为传统金融机构将数据转化为价值的核心抓手。


3.1 数据人为:建设团队是核心

尽管“专家将会消亡”、“大数据将取代人脑”的说法此起彼伏,但BCG认为,在大数据时代创造价值的主角仍是“人”。数据源自于人并服务于人。但大数据时代无疑对身处其中的从业者提出了新的要求。善于“跨界”的复合型人才在金融机构中是稀缺资源,因此构建复合型团队就成为了关键所在。然而,是否将具备业务视角或技术能力的人员组合在一起就能实现金融机构的大数据掘金梦想呢?我们的答案是否定的。若要让团队高效运作,配套机制不可或缺。


3.2 高效行动:形成机制是保障


大数据无疑在冲击传统金融机构惯常的工作方式与流程。大数据中蕴藏的大量“小机会”需要通过灵活、快速而又有纪律的工作机制才能最终形成“大价值”。对于传统金融机构而言,两项机制改革是关键。


3.2.1 引入试错机制

“错误”在传统金融机构中不是一个受欢迎的词。“不出错”甚至在很多机构中被看作是颠扑不破的生存法则。而在大数据时代,“试错”将成为必经之路。浩瀚的数据带来了无限的想象空间,同时也带来了极高的不确定性。一个关联发现究竟是真正的商机还只是噪音,只有试了才知道。成功的试错机制包括以下七个方面:


为创意的产生提供条件。在IT行业中,我们观察到有些公司开始给予员工“自由时间”,也就是说员工可以将10-15%的工作时间用于做自己感兴趣的项目。


  • 增加探索和尝试的数据。在大数据中发现商机也是个几率问题,提高基数无疑非常重要。


  • 降低成本,提高速度。“小步快跑”在大数据时代成为了值得推崇的工作方式。这意味着严格管理每一个试点的成本,将投入产出透明化,并大幅缩短每个试点的周期。


  • 降低失败的代价。这里的代价既是对机构而言,也是对个人而言。组织内部需要能够合理“容错”,降低试错者的后顾之忧。而组织自身则需要清晰的“防火墙”,让试错在可控的环境中发生。


  • 增强预判能力。在一个试点项目中往往存在一系列关键条件。密切关注这些关键条件的变化,尽早判断试点的成功几率是试错机制的关键一环。


  • 快速推广放大。当一次试错呈现出商业潜力时,机构就需要迅速果断地将成果商业化、规模化,以便充分汲取其中的价值。


  • 鼓励探索的文化。再完善的机制也会有“盲点”,而软性的文化则是填补空白的关键。


3.2.2 提高人才管理与组织管控的弹性

金融业一直是精英汇聚的行业。但在传统金融机构中,不仅数据呈现出“分治”的状态,人才的流动与重组往往也相当困难。而培养大数据时代所必需的复合型人才必然要求人才能够在组织内外灵活地流转和进出。此外,针对“业务”与“技术”对话不畅的问题,联合团队往往是有效的解决手段之一。而这样的跨部门工作机制要求在人才的选调、考核和职业发展等关键方面有相应的配套举措。只有在尝试中培养“创新的种子”,并不断将这些“种子”播种到有需求的土壤中去,才能使大数据真正融入机构的日常工作当中,持续发挥其作用,并为组织创造价值。


3.3 构筑优势:转变思维是根本


《大数据时代》(Big Data: A Revolution That Will Transform How We Live, Work, andThink)一书的作者指出, 在大数据价值链中“数据、技术与思维三足鼎立”。对于数据和技术的掌控在很大程度上取决于机构的商业模式。金融机构在这两个层面上已经拥有相当大的优势。然而,思维才是使数据中的价值持续爆发的力量。大数据的发展不仅作用于金融机构的商业模式及运营模式的方方面面,更直接对根深蒂固的传统理念构成挑战。采用关联而非因果的视角也可以帮助我们更好地理解世界。与封闭相比,开放可能是构筑商业壁垒的更有效的手段。这样的思维转变对于传统金融机构而言意味着一场异常深刻的变革,而这样的变革势必触碰到体制层面,因此也必然异常艰难。但胜者从来都是那些勇于拥抱变革并善于拥抱变革的机构。在金融行业,大数据带来的绝不仅仅是一场数据与技术的比拼。致胜因素将是机构触发、管理并固化变革的能力。


并非每个“热点”都将转瞬即逝。大数据是技术发展所带来的不可逆的大趋势,它所代表的是人类对世界的认知视角的演化,以及对世界的掌控能力的进步。对传统金融机构而言,从数据到价值的转化过程意味着新的思维在蓬勃发展,并驱动商业模式与运营模式进行深刻变革。这必将是一个漫长的过程,而且无捷径可寻。及早出发,积极、理性地试水投入,让整个机构能够借力大数据来尽快实现自我提升,这是传统金融机构将数据持续转化为生产力乃至竞争优势的必由之路。


4. 用实践引领思考——BCG在大数据方面的能力


大数据是BCG倾力投入的重点领域之一。我们的全球大数据专题团队汇聚了资深咨询顾问、数据科学家、行业专家、技术专家和第三方战略合作伙伴,从战略与业务的视角出发为客户进行方案设计、实操数据分析以及试点落地。(参阅图14


基于多年的项目经验,我们在大数据领域形成了精辟独到的见解以及科学实用的分析框架,并拥有经验丰富的团队。BCG能够在七个领域帮助客户驾驭大数据,包括:大数据战略、战略分析、平台分析、企业信息管理、业务模式转型、创新业务模式、业务数据能力建设。(参阅图15


原文发布时间为:2015-02-12

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
64 4
|
4月前
|
数据采集 存储 数据处理
数据平台问题之知识管理系统的效果如何评估
数据平台问题之知识管理系统的效果如何评估
|
4月前
|
分布式计算 DataWorks 关系型数据库
MaxCompute 生态系统中的数据集成工具
【8月更文第31天】在大数据时代,数据集成对于构建高效的数据处理流水线至关重要。阿里云的 MaxCompute 是一个用于处理大规模数据集的服务平台,它提供了强大的计算能力和丰富的生态系统工具来帮助用户管理和处理数据。本文将详细介绍如何使用 DataWorks 这样的工具将 MaxCompute 整合到整个数据处理流程中,以便更有效地管理数据生命周期。
141 0
|
2月前
|
机器学习/深度学习 数据可视化 大数据
驾驭股市大数据:Python实战指南
【10月更文挑战第1天】随着信息技术的发展,投资者现在能够访问到前所未有的海量金融数据。本文将指导您如何利用Python来抓取当前股市行情的大数据,并通过分析这些数据为自己提供决策支持。我们将介绍从数据获取到处理、分析以及可视化整个流程的技术方法。
113 2
|
4月前
|
存储 SQL 分布式计算
Hadoop生态系统概述:构建大数据处理与分析的基石
【8月更文挑战第25天】Hadoop生态系统为大数据处理和分析提供了强大的基础设施和工具集。通过不断扩展和优化其组件和功能,Hadoop将继续在大数据时代发挥重要作用。
|
4月前
|
分布式计算 搜索推荐 物联网
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决
|
4月前
|
人工智能 分布式计算 架构师
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
|
4月前
|
存储 监控 安全
大数据架构设计原则:构建高效、可扩展与安全的数据生态系统
【8月更文挑战第23天】大数据架构设计是一个复杂而系统的工程,需要综合考虑业务需求、技术选型、安全合规等多个方面。遵循上述设计原则,可以帮助企业构建出既高效又安全的大数据生态系统,为业务创新和决策支持提供强有力的支撑。随着技术的不断发展和业务需求的不断变化,持续优化和调整大数据架构也将成为一项持续的工作。
|
4月前
|
存储 数据可视化 大数据
基于Python Django的大数据招聘数据分析系统,包括数据大屏和后台管理
本文介绍了一个基于Python Django框架开发的大数据招聘数据分析系统,该系统具备后台管理功能和数据大屏展示,利用大数据技术收集和分析招聘市场趋势,帮助企业和招聘机构提高招聘效率和质量。
159 3
|
5月前
|
机器学习/深度学习 存储 分布式计算
驾驭数据洪流:大数据处理的技术与应用
大数据处理不仅是信息技术领域的一个热门话题,也是推动各行各业创新和发展的重要力量。随着技术的进步和社会需求的变化,大数据处理将继续发挥其核心作用,为企业创造更多的商业价值和社会贡献。未来,大数据处理将更加注重智能化、实时性和安全性,以应对不断增长的数据挑战。