拒绝双写:巧用Lindorm数据订阅

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
简介: 本文介绍了双写场景的一致性问题,详细介绍了三种解决方案,并针对DB->Binlog->Kafka方案给出了Lindorm数据订阅的最佳实践

用户福利

阿里云最新发布业界首款云原生多模数据库Lindorm,新用户可申请首月免费试用,获取产品技术支持,请加入钉钉群:35977898,更多内容请参考链接

双写问题介绍

双写问题(Dual Write Problem)是指:需要同时修改两个独立系统的场景,比如Database和Kafka,再比如Database和缓存,那么如何保障两个系统的数据一致性?

1111.jpg

以Database和Kafka这种常见的场景为例,我们可以有这么几种方式:

  1. 并发写Database和Kafka
  2. 先写Kafka,再写Database
  3. 先写Database,再写Kafka

并发写Database和Kafka

这种情况下需要分布式事务来支持强一致,否则不一致的情况就会比较复杂,Database和Kafka可能没有一个有完整的数据。

先写Kafka,再写Database

先写Kafka,成功后即可返回客户端成功,然后订阅Kafka消息入库Database,实现最终一致性。但这种异步化导致DB的数据更新延迟,会影响一些要求强一致读的场景。比如账单写入成功,但客户不能立即查看;再比如实时归因场景,Flink实时消费Kafka,在遇到交易事件后反查DB归因,但可能此时关键数据还没入库。

先写Database,再写Kafka

串行写Database、Kafka,成功后返回客户成功。这种方式问题也不小,第一写入延迟增加,第二Database成功、Kafka失败怎么处理?

此时我们会想到Binlog(或者WAL),新的方案是DB->Binlog->Kafka:写入Database,成功后即可返回客户端成功,然后订阅binlog写入Kafka,下游订阅Kafka消费。实现最终一致性,同时保证了Database上的强一致读。

基于业务场景决策

上面我们介绍了双写问题的三种解决方案,他们各自适应不同场景。

  1. 如果业务要求全盘的强一致体验,那么我们应当选择分布式事务。
  2. 如果业务倾向全盘的最终一致性体验,那么我们选择以MQ为第一入口实现最终一致性。
  3. 如果业务存在不同的一致性体验需求,那么我们选择强一致读写DB,以DB binlog实现最终一致性的下游业务。

Lindorm 数据订阅介绍

Lindorm数据订阅是 "DB->Binlog->Kakfa"方案的升级版。

2222.jpg

云原生多模数据库Lindorm数据订阅功能支持任何一个表的每一条数据变更,可以在客户端实时有序的查看数据变更记录。当开通某一张表的数据订阅功能后,其变更数据的操作就会被存储。为了确保数据消费的顺序和数据写入的顺序一致,数据订阅功能提供了主键级别保序,对于同一个主键的更新操作,会按照其更新的顺序存储和消费。每次对Lindorm表格的数据执行增删改操作时,数据订阅都会生成一个Stream Record键值对,键值对的键是这一行数据的主键,值是此次操作的详细信息(操作前的值,操作后的值,时间戳,操作类型)。

总结Lindorm数据订阅的特点:

  1. 实时订阅
  2. 100%兼容Kafka客户端
  3. Key级别保序

Lindorm产品链接

目录
相关文章
|
24天前
|
SQL 存储 运维
从建模到运维:联犀如何完美融入时序数据库 TDengine 实现物联网数据流畅管理
本篇文章是“2024,我想和 TDengine 谈谈”征文活动的三等奖作品。文章从一个具体的业务场景出发,分析了企业在面对海量时序数据时的挑战,并提出了利用 TDengine 高效处理和存储数据的方法,帮助企业解决在数据采集、存储、分析等方面的痛点。通过这篇文章,作者不仅展示了自己对数据处理技术的理解,还进一步阐释了时序数据库在行业中的潜力与应用价值,为读者提供了很多实际的操作思路和技术选型的参考。
40 1
|
7月前
|
存储 SQL 多模数据库
多模数据库Lindorm再升级:对接Dataphin,打通数据治理“最后一公里”
Lindorm通过与Dataphin的深度整合,进一步解决了数据集成和数据治理的问题,为企业提供更加高效和更具性价比的方案。
多模数据库Lindorm再升级:对接Dataphin,打通数据治理“最后一公里”
|
6月前
|
安全 数据管理
DataphinV4.1大升级:支持Lindorm开启高性价比数据治理,迎来“公共云半托管”云上自助新模式
DataphinV4.1大升级:支持Lindorm开启高性价比数据治理,迎来“公共云半托管”云上自助新模式
|
7月前
|
数据采集 安全 API
DataphinV4.1大升级: 支持Lindorm开启高性价比数据治理,迎来“公共云半托管”云上自助新模式
Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.1版本升级中,Dataphin 引入了Lindorm等多项新功能,并开启公共云半托管模式,优化代码搜索,为用户提供更加高效、灵活、安全的数据管理和运营环境,提升用户体验,促进企业数据资产的建设和价值挖掘。
1623 3
DataphinV4.1大升级: 支持Lindorm开启高性价比数据治理,迎来“公共云半托管”云上自助新模式
|
6月前
|
SQL 分布式计算 BI
实时计算 Flink版产品使用问题之基于宽表数据展示实时报表,该如何实现
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
7月前
|
存储 DataWorks 安全
DataWorks产品使用合集之没有使用独享资源组,如何将Lindorm中的数据导出或迁移到其他数据存储服务
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
58 0
|
7月前
|
时序数据库
时序数据库工具grafana里的$timeFilter查询1个小时内的数据如何写查询条件
【6月更文挑战第24天】时序数据库工具grafana里的$timeFilter查询1个小时内的数据如何写查询条件
887 0
|
消息中间件 存储 弹性计算
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
|
存储 NoSQL Oracle
「时序数据库」使用cassandra进行时间序列数据扫描
「时序数据库」使用cassandra进行时间序列数据扫描
|
SQL 存储 分布式计算
【时序数据库】时间序列数据和MongoDB第三部分-查询、分析和呈现时间序列数据
【时序数据库】时间序列数据和MongoDB第三部分-查询、分析和呈现时间序列数据

相关产品

  • 云原生多模数据库 Lindorm