伴鱼:借助 Flink 完成机器学习特征系统的升级

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink 用于机器学习特征工程,解决了特征上线难的问题;以及 SQL + Python UDF 如何用于生产实践。

本文作者陈易生,介绍了伴鱼平台机器学习特征系统的升级,在架构上,从 Spark 转为 Flink,解决了特征上线难的问题,以及 SQL + Python UDF 如何用于生产实践。 主要内容为:

  1. 前言
  2. 老版特征系统 V1
  3. 新版特征系统 V2
  4. 总结

GitHub 地址
https://github.com/apache/flink
欢迎大家给 Flink 点赞送 star~

一、前言

在伴鱼,我们在多个在线场景使用机器学习提高用户的使用体验,例如:在伴鱼绘本中,我们根据用户的帖子浏览记录,为用户推荐他们感兴趣的帖子;在转化后台里,我们根据用户的绘本购买记录,为用户推荐他们可能感兴趣的课程等。

特征是机器学习模型的输入。如何高效地将特征从数据源加工出来,让它能够被在线服务高效地访问,决定了我们能否在生产环境可靠地使用机器学习。为此,我们搭建了特征系统,系统性地解决这一问题。目前,伴鱼的机器学习特征系统运行了接近 100 个特征,支持了多个业务线的模型对在线获取特征的需求。

下面,我们将介绍特征系统在伴鱼的演进过程,以及其中的权衡考量。

二、旧版特征系统 V1

特征系统 V1 由三个核心组件构成:特征管道,特征仓库,和特征服务。整体架构如下图所示:

v1 architecture

特征管道包括流特征管道批特征管道,它们分别消费流数据源和批数据源,对数据经过预处理加工成特征 (这一步称为特征工程),并将特征写入特征仓库。

  • 批特征管道使用 Spark 实现,由 DolphinScheduler 进行调度,跑在 YARN 集群上;
  • 出于技术栈的一致考虑,流特征管道使用 Spark Structured Streaming 实现,和批特征管道一样跑在 YARN 集群上。

特征仓库选用合适的存储组件 (Redis) 和数据结构 (Hashes),为模型服务提供低延迟的特征访问能力。之所以选用 Redis 作为存储,是因为:

  • 伴鱼有丰富的 Redis 使用经验;
  • 包括 DoorDash Feature Store [1] 和 Feast [2] 在内的业界特征仓库解决方案都使用了 Redis。

特征服务屏蔽特征仓库的存储和数据结构,对外暴露 RPC 接口 GetFeatures(EntityName, FeatureNames),提供对特征的低延迟点查询。在实现上,这一接口基本对应于 Redis 的 HMGET EntityName FeatureName_1 ... FeatureName_N 操作。

这一版本的特征系统存在几个问题:

  • 算法工程师缺少控制,导致迭代效率低。这个问题与系统涉及的技术栈和公司的组织架构有关。在整个系统中,特征管道的迭代需求最高,一旦模型对特征有新的需求,就需要修改或者编写一个新的 Spark 任务。而 Spark 任务的编写需要有一定的 Java 或 Scala 知识,不属于算法工程师的常见技能,因此交由大数据团队全权负责。大数据团队同时负责多项数据需求,往往有很多排期任务。结果便是新特征的上线涉及频繁的跨部门沟通,迭代效率低;
  • 特征管道只完成了轻量的特征工程,降低在线推理的效率。由于特征管道由大数据工程师而非算法工程师编写,复杂的数据预处理涉及更高的沟通成本,因此这些特征的预处理程度都比较轻量,更多的预处理被留到模型服务甚至模型内部进行,增大了模型推理的时延。

为了解决这几个问题,特征系统 V2 提出几个设计目的:

  • 将控制权交还算法工程师,提高迭代效率;
  • 将更高权重的特征工程交给特征管道,提高在线推理的效率。

三、新版特征系统 V2

特征系统 V2 相比特征系统 V1 在架构上的唯一不同点在于,它将特征管道切分为三部分:特征生成管道,特征源,和特征注入管道。值得一提的是,管道在实现上均从 Spark 转为 Flink,和公司数据基础架构的发展保持一致。特征系统 V2 的整体架构如下图所示:

v2 architecture

1. 特征生成管道

特征生成管道读取原始数据源,加工为特征,并将特征写入指定特征源 (而非特征仓库)。

  • 如果管道以流数据源作为原始数据源,则它是流特征生成管道;
  • 如果管道以批数据源作为原始数据源,则它是批特征生成管道。

特征生成管道的逻辑由算法工程师全权负责编写。其中,批特征生成管道使用 HiveQL 编写,由 DolphinScheduler 调度。流特征生成管道使用 PyFlink 实现,详情见下图:

v2 codegen

算法工程师需要遵守下面步骤:

  1. 用 Flink SQL 声明 Flink 任务源 (source.sql) 和定义特征工程逻辑 (transform.sql);
  2. (可选) 用 Python 实现特征工程逻辑中可能包含的 UDF 实现 (udf_def.py);
  3. 使用自研的代码生成工具,生成可执行的 PyFlink 任务脚本 (run.py);
  4. 本地使用由平台准备好的 Docker 环境调试 PyFlink 脚本,确保能在本地正常运行;
  5. 把代码提交到一个统一管理特征管道的代码仓库,由 AI 平台团队进行代码审核。审核通过的脚本会被部署到伴鱼实时计算平台,完成特征生成管道的上线。

这一套流程确保了:

  • 算法工程师掌握上线特征的自主权;
  • 平台工程师把控特征生成管道的代码质量,并在必要时可以对它们实现重构,而无需算法工程师的介入。

2. 特征源

特征源存储从原始数据源加工形成的特征。值得强调的是,它同时还是连接算法工程师和 AI 平台工程师的桥梁。算法工程师只负责实现特征工程的逻辑,将原始数据加工为特征,写入特征源,剩下的事情就交给 AI 平台。平台工程师实现特征注入管道,将特征写入特征仓库,以特征服务的形式对外提供数据访问服务。

3. 特征注入管道

特征注入管道将特征从特征源读出,写入特征仓库。由于 Flink 社区缺少对 Redis sink 的原生支持,我们通过拓展 RichSinkFunction [3] 简单地实现了 StreamRedisSinkBatchRedisSink,很好地满足我们的需求。

其中,BatchRedisSink 通过 Flink Operator State [4] 和 Redis Pipelining [5] 的简单结合,大量参考 Flink 文档中的 BufferingSink,实现了批量写入,大幅减少对 Redis Server 的请求量,增大吞吐,写入效率相比逐条插入提升了 7 倍 [6]。BatchRedisSink 的简要实现如下。其中,flush 实现了批量写入 Redis 的核心逻辑,checkpointedState / bufferedElements / snapshotState / initializeState 实现了使用 Flink 有状态算子管理元素缓存的逻辑。

class BatchRedisSink(
    pipelineBatchSize: Int
) extends RichSinkFunction[(String, Timestamp, Map[String, String])]
    with CheckpointedFunction {

  @transient
  private var checkpointedState
      : ListState[(String, java.util.Map[String, String])] = _

  private val bufferedElements
      : ListBuffer[(String, java.util.Map[String, String])] =
    ListBuffer.empty[(String, java.util.Map[String, String])]

  private var jedisPool: JedisPool = _

  override def invoke(
      value: (String, Timestamp, Map[String, String]),
      context: SinkFunction.Context
  ): Unit = {
    import scala.collection.JavaConverters._

    val (key, _, featureKVs) = value
    bufferedElements += (key -> featureKVs.asJava)

    if (bufferedElements.size == pipelineBatchSize) {
      flush()
    }
  }

  private def flush(): Unit = {
    var jedis: Jedis = null
    try {
      jedis = jedisPool.getResource
      val pipeline = jedis.pipelined()
      for ((key, hash) <- bufferedElements) {
        pipeline.hmset(key, hash)
      }
      pipeline.sync()
    } catch { ... } finally { ... }
    bufferedElements.clear()
  }

  override def snapshotState(context: FunctionSnapshotContext): Unit = {
    checkpointedState.clear()
    for (element <- bufferedElements) {
      checkpointedState.add(element)
    }
  }

  override def initializeState(context: FunctionInitializationContext): Unit = {
    val descriptor =
      new ListStateDescriptor[(String, java.util.Map[String, String])](
        "buffered-elements",
        TypeInformation.of(
          new TypeHint[(String, java.util.Map[String, String])]() {}
        )
      )

    checkpointedState = context.getOperatorStateStore.getListState(descriptor)

    import scala.collection.JavaConverters._

    if (context.isRestored) {
      for (element <- checkpointedState.get().asScala) {
        bufferedElements += element
      }
    }
  }

  override def open(parameters: Configuration): Unit = {
    try {
      jedisPool = new JedisPool(...)
    } catch { ... }
  }

  override def close(): Unit = {
    flush()
    if (jedisPool != null) {
      jedisPool.close()
    }
  }
}

特征系统 V2 很好地满足了我们提出的设计目的。

  • 由于特征生成管道的编写只需用到 SQL 和 Python 这两种算法工程师十分熟悉的工具,因此他们全权负责特征生成管道的编写和上线,无需依赖大数据团队,大幅提高了迭代效率。在熟悉后,算法工程师通常只需花费半个小时以内,就可以完成流特征的编写、调试和上线。而这个过程原本需要花费数天,取决于大数据团队的排期;
  • 出于同样的原因,算法工程师可以在有需要的前提下,完成更重度的特征工程,从而减少模型服务和模型的负担,提高模型在线推理效率。

四、总结

特征系统 V1 解决了特征上线的问题,而特征系统 V2 在此基础上,解决了特征上线难的问题。在特征系统的演进过程中,我们总结出作为平台研发的几点经验:

  • 平台应该提供用户想用的工具。这与 Uber ML 平台团队在内部推广的经验[7] 相符。算法工程师在 Python 和 SQL 环境下工作效率最高,而不熟悉 Java 和 Scala。那么,想让算法工程师自主编写特征管道,平台应该支持算法工程师使用 Python 和 SQL 编写特征管道,而不是让算法工程师去学 Java 和 Scala,或是把工作转手给大数据团队去做;
  • 平台应该提供易用的本地调试工具。我们提供的 Docker 环境封装了 Kafka 和 Flink,让用户可以在本地快速调试 PyFlink 脚本,而无需等待管道部署到测试环境后再调试;
  • 平台应该在鼓励用户自主使用的同时,通过自动化检查或代码审核等方式牢牢把控质量。

Reference

[1] https://doordash.engineering/2020/11/19/building-a-gigascale-ml-feature-store-with-redis/

[2] https://docs.feast.dev/feast-on-kubernetes/concepts/stores#online-store

[3] https://github.com/apache/flink/blob/master/flink-streaming-java/src/main/java/org/apache/flink/streaming/api/functions/sink/RichSinkFunction.java

[4] https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/datastream/fault-tolerance/state/#using-operator-state

[5] https://redis.io/topics/pipelining

[6] https://site-git-update-feature-system-yishengdd.vercel.app/posts/flink-bulk-insert-redis


更多 Flink 相关技术问题,可扫码加入社区钉钉交流群
第一时间获取最新技术文章和社区动态,请关注公众号~

image.png

活动推荐

阿里云基于 Apache Flink 构建的企业级产品-实时计算Flink版现开启活动:
99 元试用 实时计算Flink版(包年包月、10CU)即有机会获得 Flink 独家定制T恤;另包 3 个月及以上还有 85 折优惠!
了解活动详情:https://www.aliyun.com/product/bigdata/sc

image.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
7天前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
20 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
10天前
|
存储 人工智能 大数据
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。
|
4月前
|
机器学习/深度学习 算法 数据可视化
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
477 3
|
4天前
|
存储 分布式计算 MaxCompute
使用PAI-FeatureStore管理风控应用中的特征
PAI-FeatureStore 是阿里云提供的特征管理平台,适用于风控应用中的离线和实时特征管理。通过MaxCompute定义和设计特征表,利用PAI-FeatureStore SDK进行数据摄取与预处理,并通过定时任务批量计算离线特征,同步至在线存储系统如FeatureDB或Hologres。对于实时特征,借助Flink等流处理引擎即时分析并写入在线存储,确保特征时效性。模型推理方面,支持EasyRec Processor和PAI-EAS推理服务,实现高效且灵活的风险控制特征管理,促进系统迭代优化。
25 6
|
5月前
|
消息中间件 监控 数据挖掘
基于RabbitMQ与Apache Flink构建实时分析系统
【8月更文第28天】本文将介绍如何利用RabbitMQ作为数据源,结合Apache Flink进行实时数据分析。我们将构建一个简单的实时分析系统,该系统能够接收来自不同来源的数据,对数据进行实时处理,并将结果输出到另一个队列或存储系统中。
322 2
|
10天前
|
人工智能 运维 API
PAI企业级能力升级:应用系统构建、高效资源管理、AI治理
PAI平台针对企业用户在AI应用中的复杂需求,提供了全面的企业级能力。涵盖权限管理、资源分配、任务调度与资产管理等模块,确保高效利用AI资源。通过API和SDK支持定制化开发,满足不同企业的特殊需求。典型案例中,某顶尖高校基于PAI构建了融合AI与HPC的科研计算平台,实现了作业、运营及运维三大中心的高效管理,成功服务于校内外多个场景。
|
4月前
|
人工智能 Cloud Native 数据处理
Flink Forward 品牌全面升级,上海及雅加达站双城启动
Flink Forward 品牌全面升级,全球将使用统一的会议品牌风格,Flink Forward Asia 官网也统一升级为 asia.flink-forward.org 域名。今年,Flink Forward Asia 会议将分别在上海(11月29-30日)和印尼雅加达(12月5日)举行。此外,Flink Forward 还将在德国柏林(10月21日-24日)举办,为全世界的开发者带来实时计算技术最前沿的动态和实践。
114 5
|
5月前
|
消息中间件 存储 算法
联通实时计算平台问题之亿级标签关联实现且不依赖外部系统要如何操作
联通实时计算平台问题之亿级标签关联实现且不依赖外部系统要如何操作
|
6月前
|
消息中间件 Kafka 数据处理
Kafka与Flink:构建高性能实时数据处理系统的实践指南
Apache Kafka 和 Apache Flink 的结合为构建高性能的实时数据处理系统提供了坚实的基础。通过合理的架构设计和参数配置,可以实现低延迟、高吞吐量的数据流处理。无论是在电商、金融、物流还是其他行业,这种组合都能为企业带来巨大的价值。
|
5月前
|
机器学习/深度学习 人工智能 Linux
【机器学习】Dify:AI智能体开发平台版本升级
【机器学习】Dify:AI智能体开发平台版本升级
327 0

相关产品

  • 实时计算 Flink版