为什么人工智能和机器学习与物联网紧密结合

简介: IoT 中的 AI 和 ML 分析通过使用语义将原始数据转换为可操作的见解来实现生产力、效率和有效性的提升。

物联网(IoT)的未来潜力无限。到2025年,全球物联网连接设备的总安装基数估计将增长到近310亿。从联网汽车、智能城市、智能家居设备到联网工业设备,一波激动人心的物联网应用浪潮即将涌现,带来通过直观的人机交互生活。
image.png
物联网的这些进步将通过提高网络敏捷性和自动化不同用例的能力来加速。物联网的潜力不仅在于部署数十亿台设备,还在于利用来自这些设备的数据来获取可操作的见解。据预测,未来四年,全球物联网设备将产生90ZB的数据。

有些技术不可避免地结合在一起。人工智能(AI)和物联网是两种技术在紧密连接的同时相互补充的完美例子。在物联网应用程序快速增长的世界中,跨庞大的设备网络连接和共享数据,组织需要分析。

这是在他们不断从大量物联网数据中学习时做出快速决策和发现深刻见解的能力。人工智能是分析的重要组成部分,有助于扩大物联网的整体价值。通过利用深度/机器学习(ML)和人工智能,企业可以预测客户和网络的需求,自动执行预防措施,并根据派生的行为洞察力定制产品和服务。

自主系统的关键方面是更好的决策,并为在任何环境中工作的工业机器、智能城市和设备提供自动智能行为。物联网传感器将物理世界数字化,数据以不同的速度产生——这些数据有时像视频格式一样原始,或者像RFID数据一样结构化。为了在边缘处理这些数据,无论是原始数据还是结构化数据,都需要深度机器学习模型。

例如,智慧城市项目需要安装高清交通摄像头以更好地执法。这些摄像头需要捕捉速度、登记号码并标记非法驾驶活动。传感器需要在源头对数据进行统计压缩,从噪声中提取信息以集中发送相关信息,并帮助提供有关环境中设备的本地见解。

虽然数据以不同的速度被摄取,但它需要提供准确的上下文。此外,这些事件需要处理的速度以及需要存储多少才能获得可操作的见解也很关键。此类系统需要历史数据来提高洞察力并提供更好的决策。虽然以不同的层和形状捕获数据,但它们需要近乎实时地融合在一起,以获得最佳洞察力。

这是机器学习和深度学习工具帮助产生有用见解的地方。这些工具不仅指导传感器捕捉什么,而且将层融合在一起以实时向当局分享报告。人工智能、机器学习和分析可以帮助优化客户生命周期(在这种情况下是执法部门),并让他们有效地利用所有资源来加强他们的活动。来自数据的洞察力驱动客户的生命周期,制定使用正确资源的计划并防范风险。

IoT中的AI和ML分析通过使用语义将原始数据转换为可操作的见解来实现生产力、效率和有效性的提升。它通过利用大数据的数量和种类带来的挑战来提供价值,进而提供可操作的信息和改进的决策制定。人工智能和机器学习的融合为资源受限的物联网设备在效率、准确性、生产力和总体成本节约方面的进步铺平了道路。当AI和ML分析算法与IoT协同工作时,组织可以使用它来实现更好的整体通信、实时需求计算以及更好的数据可控性。

当今组织面临的常见挑战是物联网数据的应用程序、可访问性和分析。虽然大多数人使用AI和ML来运行某种形式的统计分析,但领先者正在使用它来主动并预测事件以获得未来的洞察力。通过利用持续流入其内部系统的大量数据,这种支持AI的物联网系统可以自动、持续地为这些组织提供相关见解。

这些技术正在以不断降低的成本实现更高水平的自动化和生产力。随着消费者、企业和政府开始以各种不同的方式控制物联网,通过分析优化数据将改变我们的生活方式,让我们做出更好的选择。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
17天前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
82 27
|
29天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
48 12
|
2月前
|
人工智能 监控 物联网
深度探索人工智能与物联网的融合:构建未来智能生态系统###
在当今这个数据驱动的时代,人工智能(AI)与物联网(IoT)的深度融合正引领着一场前所未有的技术革命。本文旨在深入剖析这一融合背后的技术原理、探讨其在不同领域的应用实例及面临的挑战与机遇,为读者描绘一幅关于未来智能生态系统的宏伟蓝图。通过技术创新的视角,我们不仅揭示了AI与IoT结合的强大潜力,也展望了它们如何共同塑造一个更加高效、可持续且互联的世界。 ###
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
105 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
30天前
|
机器学习/深度学习 人工智能 算法
探索人工智能与机器学习的融合之路
在本文中,我们将探讨人工智能(AI)与机器学习(ML)之间的紧密联系以及它们如何共同推动技术革新。我们将深入分析这两种技术的基本概念、发展历程和当前的应用趋势,同时讨论它们面临的挑战和未来的发展方向。通过具体案例研究,我们旨在揭示AI与ML结合的强大潜力,以及这种结合如何为各行各业带来革命性的变化。
46 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
人工智能与机器学习:解锁数据洞察力的钥匙
人工智能与机器学习:解锁数据洞察力的钥匙
|
2月前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
84 0
|
2月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
83 3

热门文章

最新文章

相关产品

  • 物联网平台