为什么人工智能和机器学习与物联网紧密结合

简介: IoT 中的 AI 和 ML 分析通过使用语义将原始数据转换为可操作的见解来实现生产力、效率和有效性的提升。

物联网(IoT)的未来潜力无限。到2025年,全球物联网连接设备的总安装基数估计将增长到近310亿。从联网汽车、智能城市、智能家居设备到联网工业设备,一波激动人心的物联网应用浪潮即将涌现,带来通过直观的人机交互生活。
image.png
物联网的这些进步将通过提高网络敏捷性和自动化不同用例的能力来加速。物联网的潜力不仅在于部署数十亿台设备,还在于利用来自这些设备的数据来获取可操作的见解。据预测,未来四年,全球物联网设备将产生90ZB的数据。

有些技术不可避免地结合在一起。人工智能(AI)和物联网是两种技术在紧密连接的同时相互补充的完美例子。在物联网应用程序快速增长的世界中,跨庞大的设备网络连接和共享数据,组织需要分析。

这是在他们不断从大量物联网数据中学习时做出快速决策和发现深刻见解的能力。人工智能是分析的重要组成部分,有助于扩大物联网的整体价值。通过利用深度/机器学习(ML)和人工智能,企业可以预测客户和网络的需求,自动执行预防措施,并根据派生的行为洞察力定制产品和服务。

自主系统的关键方面是更好的决策,并为在任何环境中工作的工业机器、智能城市和设备提供自动智能行为。物联网传感器将物理世界数字化,数据以不同的速度产生——这些数据有时像视频格式一样原始,或者像RFID数据一样结构化。为了在边缘处理这些数据,无论是原始数据还是结构化数据,都需要深度机器学习模型。

例如,智慧城市项目需要安装高清交通摄像头以更好地执法。这些摄像头需要捕捉速度、登记号码并标记非法驾驶活动。传感器需要在源头对数据进行统计压缩,从噪声中提取信息以集中发送相关信息,并帮助提供有关环境中设备的本地见解。

虽然数据以不同的速度被摄取,但它需要提供准确的上下文。此外,这些事件需要处理的速度以及需要存储多少才能获得可操作的见解也很关键。此类系统需要历史数据来提高洞察力并提供更好的决策。虽然以不同的层和形状捕获数据,但它们需要近乎实时地融合在一起,以获得最佳洞察力。

这是机器学习和深度学习工具帮助产生有用见解的地方。这些工具不仅指导传感器捕捉什么,而且将层融合在一起以实时向当局分享报告。人工智能、机器学习和分析可以帮助优化客户生命周期(在这种情况下是执法部门),并让他们有效地利用所有资源来加强他们的活动。来自数据的洞察力驱动客户的生命周期,制定使用正确资源的计划并防范风险。

IoT中的AI和ML分析通过使用语义将原始数据转换为可操作的见解来实现生产力、效率和有效性的提升。它通过利用大数据的数量和种类带来的挑战来提供价值,进而提供可操作的信息和改进的决策制定。人工智能和机器学习的融合为资源受限的物联网设备在效率、准确性、生产力和总体成本节约方面的进步铺平了道路。当AI和ML分析算法与IoT协同工作时,组织可以使用它来实现更好的整体通信、实时需求计算以及更好的数据可控性。

当今组织面临的常见挑战是物联网数据的应用程序、可访问性和分析。虽然大多数人使用AI和ML来运行某种形式的统计分析,但领先者正在使用它来主动并预测事件以获得未来的洞察力。通过利用持续流入其内部系统的大量数据,这种支持AI的物联网系统可以自动、持续地为这些组织提供相关见解。

这些技术正在以不断降低的成本实现更高水平的自动化和生产力。随着消费者、企业和政府开始以各种不同的方式控制物联网,通过分析优化数据将改变我们的生活方式,让我们做出更好的选择。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
|
4天前
|
人工智能 监控 物联网
深度探索人工智能与物联网的融合:构建未来智能生态系统###
在当今这个数据驱动的时代,人工智能(AI)与物联网(IoT)的深度融合正引领着一场前所未有的技术革命。本文旨在深入剖析这一融合背后的技术原理、探讨其在不同领域的应用实例及面临的挑战与机遇,为读者描绘一幅关于未来智能生态系统的宏伟蓝图。通过技术创新的视角,我们不仅揭示了AI与IoT结合的强大潜力,也展望了它们如何共同塑造一个更加高效、可持续且互联的世界。 ###
|
5天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
16 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与机器学习的边界####
本文深入探讨了人工智能(AI)与机器学习(ML)领域的最新进展,重点分析了深度学习技术如何推动AI的边界不断扩展。通过具体案例研究,揭示了这些技术在图像识别、自然语言处理和自动驾驶等领域的应用现状及未来趋势。同时,文章还讨论了当前面临的挑战,如数据隐私、算法偏见和可解释性问题,并提出了相应的解决策略。 ####
|
14天前
|
存储 人工智能 大数据
物联网、大数据、云计算、人工智能之间的关系
物联网、大数据、云计算、人工智能之间的关系是紧密相连、相互促进的。这四者既有各自独立的技术特征,又能在不同层面上相互融合,共同推动信息技术的发展和应用。
123 0
|
17天前
|
机器学习/深度学习 人工智能 物联网
深度学习:物联网大数据洞察中的人工智能
深度学习:物联网大数据洞察中的人工智能
|
8天前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
25 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
25天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)

相关产品

  • 物联网平台