机器学习之阿里云天池大赛—新闻分类(二)双向长短记忆网络

简介: 本文为作者在阿里云天池大赛新闻分类比赛中的记录。

普通的长短时记忆神经网络只能对正向数据进行处理,而双向长短时记忆神经网络可以处理内容的上下文,通过新闻分类大赛结果可以看到双向长短时记忆神经网络具有一定的提升。
在pytorch中实现双向长短时记忆神经网络和简单,只需在参数中设置bidirectional=True即可,同时对循环神经网络中的ht和ct的定义num_directions=2,Linear 层in_features参数也变成hidden_size*2,如果不清楚可以参考pytorch官方文档,其他内容保持不变。

导入包

import torch
import torch.nn as nn
import torchtext
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import Vocab
from collections import Counter
from torchtext.datasets import AG_NEWS
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

读取数据

# 训练数据
dataset = pd.read_csv("data/train_set.csv", sep="\t")
# 训练集
train_dataset = dataset.sample(frac=0.9)


# 测试集
#test_dataset = dataset[~dataset.index.isin(train_dataset.index)]

训练数据初始化

tokenizer = get_tokenizer("basic_english")
counter = Counter()
for (lebel, line) in train_dataset.iloc:
    counter.update(tokenizer(line))

# 词表
vocab = Vocab(counter, min_freq=1)

# 单词总数
vocab_num = len(vocab)
# 将英文句子转成ID列表
text_pipeline = lambda x: [vocab[token] for token in tokenizer(x)]

# 将标签转成ID
label_pipeline = lambda x: int(x)
# 将训练集句子转成ID向量
def get_label_line_tensors(data):
    lines = []
    labels = []
    for (label, line) in data:
        lines.append(torch.tensor(text_pipeline(line)).to(device))
        labels.append(torch.tensor([label_pipeline(label)]).to(device))
    return labels, lines

定义模型

# 定义模型
class RNN_LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, output_size,  n_layers, vocab_size, dropout_p=0.1):
        super(RNN_LSTM, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.n_layers = n_layers
        self.vocab_size = vocab_size
        self.dropout_p = dropout_p
        
        # 定义神经网络层
        self.embeding = nn.Embedding(vocab_size, input_size)
        self.rnn = nn.LSTM(input_size, hidden_size, n_layers, dropout=self.dropout_p, bidirectional=True)
        self.out = nn.Linear(hidden_size*2, output_size)
        self.softmax = nn.LogSoftmax(dim=0)
        
    # 前馈
    def forward(self, input_words, hidden, cell):
        seq_len = input_words.size()[0]
        embeding = self.embeding(input_words).view(seq_len, 1, -1)
        out, (hn, cn) = self.rnn(embeding, (hidden, cell))
        out = self.softmax(self.out(out))
        return out, (hn, cn)
        
    # 初始化隐含层
    def init_hidden(self):
        hidden = torch.zeros(self.n_layers*2, 1, self.hidden_size)
        return hidden.to(device)
    
    # 初始化 cell state
    def init_cell_state(self):
        cell = torch.zeros(self.n_layers*2, 1, self.hidden_size)
        return cell.to(device)

定义训练方法

# 数据训练
def train(line, label, loss):
    optimizer.zero_grad()
    hidden = model.init_hidden()
    cell = model.init_cell_state()
    o, (h, c)  = model(line, hidden, cell)
    #oh = torch.sum(o, dim=0)
    oh = o[-1:].squeeze(0)
    l = loss(oh, label)
    
    l.backward()
    optimizer.step()
    return l

执行训练

labels, lines = get_label_line_tensors(train_dataset.iloc)
import random
import time
lossNum = []
begin = time.time()
print(begin)
optimizer = torch.optim.Adam(model.parameters(), lr=5e-4)
for i in range(300001):
    idx = random.randint(0, 179999)
    l = train(lines[idx], labels[idx], loss)
    lossNum.append(l)
    if i % 10000==0 or i==(159999):
        print(l)
print(time.time()-begin)

模型保存

torch.save(model, "model60.pkl")

定义一个简单的预测函数

#结果预测 为了快速度得到结果,使用简单粗暴的方法获取预测结果
def get_l(g):
    id = -1
    g1 = torch.max(g)
    for i in range(14):
        if g1==g[i]:
            id = i
            break
    return id

执行测试数据预测并保存

# 训练数据
submit_dataset = pd.read_csv("data/test_a.csv", sep="\t")
t_lines_ = []
for line in submit_dataset.iloc:
    t_lines_.append(torch.tensor(text_pipeline(line["text"])).to(device))

#预测结果
writes = []
for w in t_lines_:
    check_h = model.init_hidden()
    check_c = model.init_cell_state()
    check_o, (_, _) = model(w, check_h, check_c)
    writes.append(get_l(check_o[-1, -1]))
#写入数据到csv
tt = pd.DataFrame({"label": []})
tt["label"] = writes[0]
tt.to_csv("submit2.csv", sep="\t", index=False)

分类结果

目录
相关文章
|
3月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
4天前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
|
3天前
|
机器学习/深度学习 边缘计算 运维
机器学习在网络安全中的防护:智能化的安全屏障
机器学习在网络安全中的防护:智能化的安全屏障
32 15
|
17天前
|
开发者 Python
阿里云PAI DSW快速部署服务
在使用阿里云DSW实例进行开发的时候,可能需要快速部署服务测试应用效果。DSW实例目前已经支持通过自定义服务访问配置功能,对外提供服务访问能力,您在应用开发过程中无需分享整个DSW实例,即可将服务分享给协作开发者进行测试和验证。
67 23
|
3天前
|
并行计算 PyTorch 算法框架/工具
阿里云PAI-部署Qwen2-VL-72B
阿里云PAI-部署Qwen2-VL-72B踩坑实录
|
2月前
|
机器学习/深度学习 人工智能 算法
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
阿里云人工智能平台 PAI 顺利通过中国信通院组织的 ITU-T AICP-GA国际标准和《智算工程平台能力要求》国内标准一致性测评,成为国内首家通过该标准的企业。阿里云人工智能平台 PAI 参与完成了智算安全、AI 能力中心、数据工程、模型开发训练、模型推理部署等全部八个能力域,共计220余个用例的测试,并100%通过测试要求,获得了 ITU 国际标准和国内可信云标准评估通过双证书。
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
【NeurIPS'24】阿里云 PAI 团队论文被收录为 Spotlight,并完成主题演讲分享
12月10日,NeurIPS 2024在温哥华开幕,阿里云PAI团队论文《PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations》入选Spotlight,PAI团队还进行了“可信AI的技术解读与最佳实践”主题演讲,展示AI工程化平台产品能力。
|
2月前
|
机器学习/深度学习 人工智能 数据挖掘
打破传统:机器学习与神经网络获2024年诺贝尔物理学奖引发的思考
诺贝尔物理学奖首次授予机器学习与神经网络领域,标志该技术在物理学研究中的重要地位。本文探讨了这一决定对物理学研究的深远影响,包括数据分析、理论物理突破及未来科研方向的启示,同时分析了其对学术跨界合作与全球科研产业的影响。
57 4
|
2月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
151 1
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络