机器学习之阿里云天池大赛—新闻分类(二)双向长短记忆网络

简介: 本文为作者在阿里云天池大赛新闻分类比赛中的记录。

普通的长短时记忆神经网络只能对正向数据进行处理,而双向长短时记忆神经网络可以处理内容的上下文,通过新闻分类大赛结果可以看到双向长短时记忆神经网络具有一定的提升。
在pytorch中实现双向长短时记忆神经网络和简单,只需在参数中设置bidirectional=True即可,同时对循环神经网络中的ht和ct的定义num_directions=2,Linear 层in_features参数也变成hidden_size*2,如果不清楚可以参考pytorch官方文档,其他内容保持不变。

导入包

import torch
import torch.nn as nn
import torchtext
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import Vocab
from collections import Counter
from torchtext.datasets import AG_NEWS
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

读取数据

# 训练数据
dataset = pd.read_csv("data/train_set.csv", sep="\t")
# 训练集
train_dataset = dataset.sample(frac=0.9)


# 测试集
#test_dataset = dataset[~dataset.index.isin(train_dataset.index)]

训练数据初始化

tokenizer = get_tokenizer("basic_english")
counter = Counter()
for (lebel, line) in train_dataset.iloc:
    counter.update(tokenizer(line))

# 词表
vocab = Vocab(counter, min_freq=1)

# 单词总数
vocab_num = len(vocab)
# 将英文句子转成ID列表
text_pipeline = lambda x: [vocab[token] for token in tokenizer(x)]

# 将标签转成ID
label_pipeline = lambda x: int(x)
# 将训练集句子转成ID向量
def get_label_line_tensors(data):
    lines = []
    labels = []
    for (label, line) in data:
        lines.append(torch.tensor(text_pipeline(line)).to(device))
        labels.append(torch.tensor([label_pipeline(label)]).to(device))
    return labels, lines

定义模型

# 定义模型
class RNN_LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, output_size,  n_layers, vocab_size, dropout_p=0.1):
        super(RNN_LSTM, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.n_layers = n_layers
        self.vocab_size = vocab_size
        self.dropout_p = dropout_p
        
        # 定义神经网络层
        self.embeding = nn.Embedding(vocab_size, input_size)
        self.rnn = nn.LSTM(input_size, hidden_size, n_layers, dropout=self.dropout_p, bidirectional=True)
        self.out = nn.Linear(hidden_size*2, output_size)
        self.softmax = nn.LogSoftmax(dim=0)
        
    # 前馈
    def forward(self, input_words, hidden, cell):
        seq_len = input_words.size()[0]
        embeding = self.embeding(input_words).view(seq_len, 1, -1)
        out, (hn, cn) = self.rnn(embeding, (hidden, cell))
        out = self.softmax(self.out(out))
        return out, (hn, cn)
        
    # 初始化隐含层
    def init_hidden(self):
        hidden = torch.zeros(self.n_layers*2, 1, self.hidden_size)
        return hidden.to(device)
    
    # 初始化 cell state
    def init_cell_state(self):
        cell = torch.zeros(self.n_layers*2, 1, self.hidden_size)
        return cell.to(device)

定义训练方法

# 数据训练
def train(line, label, loss):
    optimizer.zero_grad()
    hidden = model.init_hidden()
    cell = model.init_cell_state()
    o, (h, c)  = model(line, hidden, cell)
    #oh = torch.sum(o, dim=0)
    oh = o[-1:].squeeze(0)
    l = loss(oh, label)
    
    l.backward()
    optimizer.step()
    return l

执行训练

labels, lines = get_label_line_tensors(train_dataset.iloc)
import random
import time
lossNum = []
begin = time.time()
print(begin)
optimizer = torch.optim.Adam(model.parameters(), lr=5e-4)
for i in range(300001):
    idx = random.randint(0, 179999)
    l = train(lines[idx], labels[idx], loss)
    lossNum.append(l)
    if i % 10000==0 or i==(159999):
        print(l)
print(time.time()-begin)

模型保存

torch.save(model, "model60.pkl")

定义一个简单的预测函数

#结果预测 为了快速度得到结果,使用简单粗暴的方法获取预测结果
def get_l(g):
    id = -1
    g1 = torch.max(g)
    for i in range(14):
        if g1==g[i]:
            id = i
            break
    return id

执行测试数据预测并保存

# 训练数据
submit_dataset = pd.read_csv("data/test_a.csv", sep="\t")
t_lines_ = []
for line in submit_dataset.iloc:
    t_lines_.append(torch.tensor(text_pipeline(line["text"])).to(device))

#预测结果
writes = []
for w in t_lines_:
    check_h = model.init_hidden()
    check_c = model.init_cell_state()
    check_o, (_, _) = model(w, check_h, check_c)
    writes.append(get_l(check_o[-1, -1]))
#写入数据到csv
tt = pd.DataFrame({"label": []})
tt["label"] = writes[0]
tt.to_csv("submit2.csv", sep="\t", index=False)

分类结果

目录
相关文章
|
22天前
|
机器学习/深度学习 数据采集 人工智能
Machine Learning机器学习之贝叶斯网络(BayesianNetwork)
Machine Learning机器学习之贝叶斯网络(BayesianNetwork)
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】
机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】
|
1月前
|
机器学习/深度学习 安全 算法
利用机器学习优化网络安全防御机制
【2月更文挑战第23天】 在数字化时代,网络安全已成为维护信息完整性、保障用户隐私的关键挑战。随着攻击手段的日益复杂化,传统的防御策略逐渐显得力不从心。本文通过引入机器学习技术,探索其在网络安全防御中的应用及优化路径。首先,概述了当前网络安全面临的主要威胁和机器学习的基本概念;其次,分析了机器学习在识别恶意行为、自动化响应等方面的潜力;最后,提出了一个基于机器学习的网络安全防御框架,并通过案例分析展示了其有效性。本研究旨在为网络安全领域提供一种创新的防御思路,以适应不断演变的网络威胁。
31 2
|
1月前
|
机器学习/深度学习 人工智能 算法
【AAAI 2024】再创佳绩!阿里云人工智能平台PAI多篇论文入选
阿里云人工智能平台PAI发表的多篇论文在AAAI-2024上正式亮相发表。AAAI是由国际人工智能促进协会主办的年会,是人工智能领域中历史最悠久、涵盖内容最广泛的国际顶级学术会议之一,也是中国计算机学会(CCF)推荐的A类国际学术会议。论文成果是阿里云与浙江大学、华南理工大学联合培养项目等共同研发,深耕以通用人工智能(AGI)为目标的一系列基础科学与工程问题,包括多模态理解模型、小样本类增量学习、深度表格学习和文档版面此次入选意味着阿里云人工智能平台PAI自研的深度学习算法达到了全球业界先进水平,获得了国际学者的认可,展现了阿里云人工智能技术创新在国际上的竞争力。
|
1月前
|
机器学习/深度学习 自然语言处理 运维
基于机器学习的网络安全威胁检测系统
【2月更文挑战第20天】 在数字化时代,网络安全已成为全球关注的焦点。随着攻击手段的日益复杂化,传统的安全防御措施已不足以应对新型的网络威胁。本文提出了一种基于机器学习的网络安全威胁检测系统,旨在通过智能算法提升威胁识别的准确性和效率。系统结合了多种机器学习技术,包括深度学习、异常检测和自然语言处理,以适应不同类型的网络攻击。经过严格的测试与验证,该系统显示出较传统方法更高的检出率及更低的误报率,为网络安全管理提供了一种新的解决方案。
|
15天前
|
机器学习/深度学习 自然语言处理 算法
|
8天前
|
机器学习/深度学习 存储 算法
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
30 7
|
1月前
|
机器学习/深度学习 算法 流计算
机器学习PAI常见问题之编译包下载不了如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
1月前
|
弹性计算 网络协议 关系型数据库
网络技术基础阿里云实验——企业级云上网络构建实践
实验地址:<https://developer.aliyun.com/adc/scenario/65e54c7876324bbe9e1fb18665719179> 本文档指导在阿里云上构建跨地域的网络环境,涉及杭州和北京两个地域。任务包括创建VPC、交换机、ECS实例,配置VPC对等连接,以及设置安全组和网络ACL规则以实现特定服务间的互访。例如,允许北京的研发服务器ECS-DEV访问杭州的文件服务器ECS-FS的SSH服务,ECS-FS访问ECS-WEB01的SSH服务,ECS-WEB01访问ECS-DB01的MySQL服务,并确保ECS-WEB03对外提供HTTP服务。
|
1月前
|
机器学习/深度学习 数据采集 安全
基于机器学习的网络安全威胁检测系统
【2月更文挑战第30天】 随着网络技术的迅猛发展,网络安全问题日益凸显,传统的安全防御机制面临新型攻击手段的挑战。本文提出一种基于机器学习的网络安全威胁检测系统,通过构建智能算法模型,实现对异常流量和潜在攻击行为的实时监测与分析。系统融合了深度学习与行为分析技术,旨在提高威胁识别的准确性与响应速度,为网络环境提供更为坚固的安全防线。