Redis开发运维实践开发者设计规范之典型使用场景参考

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介:

4.6 典型使用场景参考

下面是Redis适用的一些场景:

1. 取最新 N 个数据的操作

比如典型的取你网站的最新文章,通过下面方式,我们可以将最新的 5000条评论的ID放在Redis的List集合中,并将超出集合部分从数据库获取。

使用LPUSH latest.comments 命令,向 list集合中插入数据 插入完成后再用 LTRIM latest.comments 0 5000 命令使其永远只保存最近5000个 ID 然后我们在客户端获取某一页评论时可以用下面的逻辑

FUNCTION get_latest_comments(start,num_items):
 id_list = redis.lrange("latest.comments",start,start+num_items-1) 
 IF id_list.length < num_items 
 id_list = SQL_DB("SELECT ... ORDER BY time LIMIT ...") 
 END 
 RETURN id_list 
END 

如果你还有不同的筛选维度,比如某个分类的最新 N 条,那么你可以再建一个按此分类的List,只存ID的话,Redis是非常高效的。

2. 排行榜应用,取 TOP N 操作

这个需求与上面需求的不同之处在于,前面操作以时间为权重,这个是以某个条件为权重,比如按顶的次数排序,这时候就需要我们的 sorted set出马了,将你要排序的值设置成 sorted set的score,将具体的数据设置成相应的 value,每次只需要执行一条ZADD命令即可。

127.0.0.1:6379> zdd topapp 1 weixin
(error) ERR unknown command 'zdd'
127.0.0.1:6379> zadd topapp 1 weixin
(integer) 1
127.0.0.1:6379> zadd topapp 1 QQ
(integer) 1
127.0.0.1:6379> zadd topapp 2 meituan
(integer) 1
127.0.0.1:6379> zincrby topapp 1 meituan
"3"
127.0.0.1:6379> zincrby topapp 1 QQ
"2"
127.0.0.1:6379> zrank topapp QQ
(integer) 1
3) "meituan"
127.0.0.1:6379> zrank topapp weixin
(integer) 0
127.0.0.1:6379> zrange topapp 0 -1
1) "weixin"
2) "QQ"

3.需要精准设定过期时间的应用

比如你可以把上面说到的 sorted set 的 score 值设置成过期时间的时间戳,那么就可以简单地通过过期时间排序,定时清除过期数据了,不仅是清除 Redis中的过期数据,你完全可以把 Redis 里这个过期时间当成是对数据库中数据的索引,用 Redis 来找出哪些数据需要过期删除,然后再精准地从数据库中删除相应的记录。

4.计数器应用

Redis的命令都是原子性的,你可以轻松地利用 INCR,DECR 命令来构建计数器系统。

5.Uniq 操作,获取某段时间所有数据排重值

这个使用Redis的 set数据结构最合适了,只需要不断地将数据往 set中扔就行了,set意为集合,所以会自动排重。

6.实时系统,反垃圾系统

通过上面说到的 set功能,你可以知道一个终端用户是否进行了某个操作,可以找到其操作的集合并进行分析统计对比等。

7.Pub/Sub 构建实时消息系统

Redis 的 Pub/Sub 系统可以构建实时的消息系统,比如很多用 Pub/Sub 构建的实时聊天系统的例子。

8.构建队列系统

使用list可以构建队列系统,使用 sorted set甚至可以构建有优先级的队列系统。

9.缓存

性能优于Memcached,数据结构更多样化。作为RDBMS的前端挡箭牌,redis可以对一些使用频率极高的sql操作进行cache,比如,我们可以根据sql的hash进行SQL结果的缓存:

def get_results(sql):
    hash = md5.new(sql).digest()
    result = redis.get(hash)
    if result is None:
        result = db.execute(sql)
        redis.set(hash, result)
        # or use redis.setex to set a TTL for the key
    return result

10.使用setbit进行统计计数

下边的例子是记录UV

#!/usr/bin/python
import redis
from bitarray import bitarray
from datetime import date

r=redis.Redis(host='localhost', port=6379, db=0)
today=date.today().strftime('%Y-%m-%d')

def bitcount(n):
len(bin(n)-2)

def setup():
r.delete('user:'+today)
r.setbit('user:'+today,100,0)

def setuniquser(uid):
r.setbit('user:'+today,uid,1)

def countuniquser():
a = bitarray()
a.frombytes(r.get('user:'+today),)
print a
print a.count()


if __name__=='__main__':
setup()
setuniquser(uid=0)
countuniquser()

11.维护好友关系

使用set进行是否为好友关系,共同好友等操作

12.使用 Redis 实现自动补全功能

使用有序集合保存输入结果:

ZADD word:a 0 apple 0 application 0 acfun 0 adobe
ZADD word:ap 0 apple 0 application
ZADD word:app 0 apple 0 application
ZADD word:appl 0 apple 0 application
ZADD word:apple 0 apple
ZADD word:appli 0 application

再使用一个有序集合保存热度:

ZADD word_scores 100 apple 80 adobe 70 application 60 acfun

取结果时采用交集操作:

ZINTERSTORE word_result 2 word_scores word:a WEIGHTS 1 1
ZRANGE word_result 0 -1 withscores

13. 可靠队列设计

• UUIDs as Surrogate Keys Our strategy spreads information about the state of an item in the queue across a number of Redis data structures, requiring the use of a per-item surrogate key to tie them together. The UUID is a good choice here because 1) they are quick to generate, and 2) can be generated by the clients in a decentralized manner. • Pending List The Pending List holds the generated UUIDs for the items that have been enqueued(), and are ready to be processed. It is a RedisList, presenting the generated UUIDs in FIFO order. • Values Hash The Values Hash holds the actual items that have been enqueued. It is a Redis Hash, mapping the generated UUID to the binary form of the the item. This is the only representation of the original item that will appear in any of the data structures. • Stats Hash The Stats Hash records some timestamps and counts for each of the items. Specifically: • enqueue time • last dequeue time • dequeue count • last requeue time • last requeue count. It is a Redis Hash, mapping the generated UUID to a custom data structure that holds this data in a packed, binary form. Why keep stats on a per-item basis? We find it really useful for debugging (e.g. do we have a bad apple item that is being continuously requeued?), and for understanding how far behind we are if queues start to back up. Furthermore, the cost is only ~40 bytes per item, much smaller than our typical queued items. • Working Set The Working Set holds the set of UUIDs that have been dequeued(), and are currently being processed. It is a Redis Sorted Set, and scores each of the UUIDs by a pre-calculated, millisecond timestamp. Any object that has exceeded its assigned timeout is considered abandoned, and is available to be reclaimed. • Delay Set The Delay Set holds the set of UUIDs that have been requeued() with a per-item deferment. It is a Redis Sorted Set, and scores each of the UUIDs by a pre-calculated, millisecond timestamp. Once the deferment timestamp has expired, the item will be returned to the Pending List. Why support per-item deferment? We have a number of use cases where we might want to backoff specific pieces of work — maybe an underlying resource is too busy — without backing off the entire queue. Per-item deferment lets us say, “requeue this item, but don’t make it available for dequeue for another n seconds.”


Redis开发运维实践指南

本文为《Redis开发运维实践指南》内容,该书作者为黄鹏程,已授权云栖社区转载。



相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
NoSQL Java Redis
shiro学习四:使用springboot整合shiro,正常的企业级后端开发shiro认证鉴权流程。使用redis做token的过滤。md5做密码的加密。
这篇文章介绍了如何使用Spring Boot整合Apache Shiro框架进行后端开发,包括认证和授权流程,并使用Redis存储Token以及MD5加密用户密码。
26 0
shiro学习四:使用springboot整合shiro,正常的企业级后端开发shiro认证鉴权流程。使用redis做token的过滤。md5做密码的加密。
|
1月前
|
NoSQL API Redis
如何使用 C++ 开发 Redis 模块
如何使用 C++ 开发 Redis 模块
|
3月前
|
消息中间件 存储 NoSQL
redis实战——go-redis的使用与redis基础数据类型的使用场景(一)
本文档介绍了如何使用 Go 语言中的 `go-redis` 库操作 Redis 数据库
172 0
redis实战——go-redis的使用与redis基础数据类型的使用场景(一)
|
4月前
|
编解码 NoSQL Redis
c++开发redis module问题之想实现Redis命令,如何解决
c++开发redis module问题之想实现Redis命令,如何解决
|
4月前
|
NoSQL Java 编译器
c++开发redis module问题之保证Redis在fork时没有处于inflight状态的命令,如何解决
c++开发redis module问题之保证Redis在fork时没有处于inflight状态的命令,如何解决
|
4月前
|
运维 NoSQL Redis
c++开发redis module问题之module根据Redis的角色采取不同的行为,如何解决
c++开发redis module问题之module根据Redis的角色采取不同的行为,如何解决
|
4月前
|
NoSQL Redis C++
c++开发redis module问题之对于写命令,进行主备复制和写AOF,如何解决
c++开发redis module问题之对于写命令,进行主备复制和写AOF,如何解决
|
4月前
|
NoSQL Linux Redis
c++开发redis module问题之避免在fork后子进程中发生死锁,如何解决
c++开发redis module问题之避免在fork后子进程中发生死锁,如何解决
|
1月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
74 6
|
6天前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题