Python爬虫基础

简介: Python爬虫基础

前言

Python非常适合用来开发网页爬虫,理由如下:
1、抓取网页本身的接口
相比与其他静态编程语言,如Java,c#,c++,python抓取网页文档的接口更简洁;相比其他动态脚本语言,如perl,shell,python的urllib包提供了较为完整的访问网页文档的API。(当然ruby也是很好的选择)
此外,抓取网页有时候需要模拟浏览器的行为,很多网站对于生硬的爬虫抓取都是封杀的。这是我们需要模拟user agent的行为构造合适的请求,譬如模拟用户登陆、模拟session/cookie的存储和设置。在python里都有非常优秀的第三方包帮你搞定,如Requests,mechanize

2、网页抓取后的处理
抓取的网页通常需要处理,比如过滤html标签,提取文本等。python的beautifulsoap提供了简洁的文档处理功能,能用极短的代码完成大部分文档的处理。
其实以上功能很多语言和工具都能做,但是用python能够干得最快,最干净。如果你想学习Python可以来这个群,首先是四七二,中间是三零九,最后是二六一,里面有大量的学习资料可以下载。

Life is short, you need python.

PS:python2.x和python3.x有很大不同,本文只讨论python3.x的爬虫实现方法。

爬虫架构

架构组成


URL管理器:管理待爬取的url集合和已爬取的url集合,传送待爬取的url给网页下载器。
网页下载器(urllib):爬取url对应的网页,存储成字符串,传送给网页解析器。
网页解析器(BeautifulSoup):解析出有价值的数据,存储下来,同时补充url到URL管理器。

运行流程

URL管理器

基本功能

  • 添加新的url到待爬取url集合中。
  • 判断待添加的url是否在容器中(包括待爬取url集合和已爬取url集合)。
  • 获取待爬取的url。
  • 判断是否有待爬取的url。
  • 将爬取完成的url从待爬取url集合移动到已爬取url集合。

存储方式

1、内存(python内存)
待爬取url集合:set()
已爬取url集合:set()

2、关系数据库MySQL
urls(url, is_crawled)

3、缓存(Redis
待爬取url集合:set
已爬取url集合:set

大型互联网公司,由于缓存数据库的高性能,一般把url存储在缓存数据库中。小型公司,一般把url存储在内存中,如果想要永久存储,则存储到关系数据库中。如果你想学习Python可以来这个群,首先是四七二,中间是三零九,最后是二六一,里面有大量的学习资料可以下载。

网页下载器(urllib)

将url对应的网页下载到本地,存储成一个文件或字符串。

基本方法

新建baidu.py,内容如下:

import urllib.request

response = urllib.request.urlopen('http://www.baidu.com')
buff = response.read()
html = buff.decode("utf8")
print(html)

命令行中执行python baidu.py,则可以打印出获取到的页面。

构造Request

上面的代码,可以修改为:

import urllib.request

request = urllib.request.Request('http://www.baidu.com')
response = urllib.request.urlopen(request)
buff = response.read()
html = buff.decode("utf8")
print(html)

携带参数

新建baidu2.py,内容如下:

import urllib.request
import urllib.parse

url = 'http://www.baidu.com'
values = {'name': 'voidking','language': 'Python'}
data = urllib.parse.urlencode(values).encode(encoding='utf-8',errors='ignore')
headers = { 'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; WOW64; rv:50.0) Gecko/20100101 Firefox/50.0' }
request = urllib.request.Request(url=url, data=data,headers=headers,method='GET')
response = urllib.request.urlopen(request)
buff = response.read()
html = buff.decode("utf8")
print(html)

使用Fiddler监听数据

我们想要查看一下,我们的请求是否真的携带了参数,所以需要使用fiddler。
打开fiddler之后,却意外发现,上面的代码会报错504,无论是baidu.py还是baidu2.py。

虽然python有报错,但是在fiddler中,我们可以看到请求信息,确实携带了参数。

经过查找资料,发现python以前版本的Request都不支持代理环境下访问https。但是,最近的版本应该支持了才对。那么,最简单的办法,就是换一个使用http协议的url来爬取,比如,换成http://www.csdn.NET。结果,依然报错,只不过变成了400错误。

然而,然而,然而。。。神转折出现了!!!
当我把url换成http://www.csdn.Net/后,请求成功!没错,就是在网址后面多加了一个斜杠/。同理,把http://www.baidu.com改成http://www.baidu.com/,请求也成功了!神奇!!!

添加处理器

import urllib.request
import http.cookiejar

# 创建cookie容器
cj = http.cookiejar.CookieJar()
# 创建opener
opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj))
# 给urllib.request安装opener
urllib.request.install_opener(opener)

# 请求
request = urllib.request.Request('http://www.baidu.com/')
response = urllib.request.urlopen(request)
buff = response.read()
html = buff.decode("utf8")
print(html)
print(cj)

网页解析器(BeautifulSoup)

从网页中提取出有价值的数据和新的url列表。

解析器选择

为了实现解析器,可以选择使用正则表达式、html.parser、BeautifulSoup、lxml等,这里我们选择BeautifulSoup。
其中,正则表达式基于模糊匹配,而另外三种则是基于DOM结构化解析。

BeautifulSoup

安装测试

1、安装,在命令行下执行pip install beautifulsoup4
2、测试

import bs4
print(bs4)

使用说明


基本用法

1、创建BeautifulSoup对象

import bs4
from bs4 import BeautifulSoup

# 根据html网页字符串创建BeautifulSoup对象
html_doc = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title"><b>The Dormouse's story</b></p>

<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>

<p class="story">...</p>
"""
soup = BeautifulSoup(html_doc)
print(soup.prettify())

2、访问节点

print(soup.title)
print(soup.title.name)
print(soup.title.string)
print(soup.title.parent.name)

print(soup.p)
print(soup.p['class'])

3、指定tag、class或id

print(soup.find_all('a'))
print(soup.find('a'))
print(soup.find(class_='title'))
print(soup.find(id="link3"))
print(soup.find('p',class_='title'))

4、从文档中找到所有<a>标签的链接

for link in soup.find_all('a'):
    print(link.get('href'))


出现了警告,根据提示,我们在创建BeautifulSoup对象时,指定解析器即可。

soup = BeautifulSoup(html_doc,'html.parser')

5、从文档中获取所有文字内容

print(soup.get_text())

6、正则匹配

link_node = soup.find('a',href=re.compile(r"til"))
print(link_node)

后记

python爬虫基础知识,至此足够,接下来,在实战中学习更高级的知识。

相关文章
|
9天前
|
数据采集 存储 JavaScript
构建你的第一个Python网络爬虫
【9月更文挑战第34天】在数字信息泛滥的时代,快速有效地获取和处理数据成为一项重要技能。本文将引导读者通过Python编写一个简易的网络爬虫,实现自动化地从网页上抓取数据。我们将一步步走过代码的编写过程,并探讨如何避免常见陷阱。无论你是编程新手还是想扩展你的技术工具箱,这篇文章都将为你提供有价值的指导。
58 18
|
5天前
|
数据采集 存储 数据处理
Python爬虫-数据处理与存储(一)
Python爬虫-数据处理与存储(一)
22 0
|
10天前
|
数据采集 存储 数据挖掘
深入探索 Python 爬虫:高级技术与实战应用
本文介绍了Python爬虫的高级技术,涵盖并发处理、反爬虫策略(如验证码识别与模拟登录)及数据存储与处理方法。通过asyncio库实现异步爬虫,提升效率;利用tesseract和requests库应对反爬措施;借助SQLAlchemy和pandas进行数据存储与分析。实战部分展示了如何爬取电商网站的商品信息及新闻网站的文章内容。提醒读者在实际应用中需遵守法律法规。
131 66
|
1天前
|
数据采集 JSON 算法
Python爬虫——基于JWT的模拟登录爬取实战
Python爬虫——基于JWT的模拟登录爬取实战
11 1
Python爬虫——基于JWT的模拟登录爬取实战
|
1天前
|
数据采集 JSON 算法
Python爬虫——模拟登录
Python爬虫——模拟登录
21 3
|
1天前
|
数据采集 JavaScript 前端开发
JavaScript逆向爬虫——使用Python模拟执行JavaScript
JavaScript逆向爬虫——使用Python模拟执行JavaScript
11 2
|
1天前
|
数据采集 前端开发 NoSQL
Python编程异步爬虫实战案例
Python编程异步爬虫实战案例
10 2
|
4天前
|
数据采集 XML 数据格式
Python爬虫--xpath
Python爬虫--xpath
11 1
|
4天前
|
数据采集 Python
Python爬虫-爬取全国各地市的邮编链接
Python爬虫-爬取全国各地市的邮编链接
16 1
|
13天前
|
数据采集 存储 XML
构建高效的Python爬虫系统
【9月更文挑战第30天】在数据驱动的时代,掌握如何快速高效地获取网络信息变得至关重要。本文将引导读者了解如何构建一个高效的Python爬虫系统,从基础概念出发,逐步深入到高级技巧和最佳实践。我们将探索如何使用Python的强大库如BeautifulSoup和Scrapy,以及如何应对反爬措施和提升爬取效率的策略。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的知识和技能,帮助你在信息收集的海洋中航行得更远、更深。
38 6