MaxCompute SQL使用小技巧之行列转换

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 行列转换在业务需求分析经常使用,方法很多,这里介绍下使用Maxcomputer内置函数进行转换

行列转换根据具体业务需求有跟多方式,这里介绍下个人的想法,话不多说,上示例

案例行转列:有一张成绩表(如下)

name

subject

score

兮辰

语文

85

兮辰

数学

92

兮辰

英语

98

兮辰

体育

91

无尽

语文

90

无尽

数学

89

无尽

英语

93

无尽

体育

86

...

...

...

展示如下:

name

Chi

Math

Eng

P.E

兮辰

85

92

98

91

无尽

90

89

93

86

...

...

...

...

...

首先先生成示例数据

with tb as(select        name,        subject,        score
fromvalues('兮辰','语文',85),('兮辰','数学',92),('兮辰','英语',98),('兮辰','体育',91),('无尽','语文',90),('无尽','数学',89),('无尽','英语',93),('无尽','体育',86)               t(name,subject,score))

方式1:使用case when配合聚合函数max

select    name,    max(case when subject ='语文' then score end)as Chi,    max(case when subject ='数学' then score end)as Math,    max(case when subject ='英语' then score end)as Eng,    max(case when subject ='体育' then score end)as PE
from tb
groupby name;--结果如下:name chi math eng pe
兮辰  85929891无尽  90899386

方式2:使用collect_list函数(根据需求不同,也可以使用collect_list+array_contains组合方式)

--该方式也有弊端,必须保障原表各科目顺序是一致的,否则从数组里拿出来的成绩将不对应select    name,    score_list[0]as Chi,    score_list[1]as Math,    score_list[2]as Eng,    score_list[3]as PE
from(select        name,        collect_list(score)as score_list
from tb 
groupby name
)tmp;--结果如下:name  chi math  eng pe
兮辰  85929891无尽  90899386

方式3:使用keyvalue函数,详细使用方法见阿里云文档

https://help.aliyun.com/document_detail/48973.html?spm=a2c4g.11186623.6.833.2dd76fd0jGM2C7#section-lnq-tyz-vdb

--将字符串'1:a;2:b'拆分为Key-Value对,返回其中key为1的value值select keyvalue('1:a;2:b',1);--a
select    name,    keyvalue(subject,'语文')as Chi,    keyvalue(subject,'数学')as Math,    keyvalue(subject,'英语')as Eng,    keyvalue(subject,'体育')as PE
from(select        name,        wm_concat(';',concat(subject,':',score))as subject
from ta
groupby name
)tmp
--结果如下:name  chi math  eng pe
兮辰  85929891无尽  90899386

案例列转行:有一张成绩表(如下)

name

Chi

Math

Eng

P.E

兮辰

85

92

98

91

无尽

90

89

93

86

...

...

...

...

...

展示如下:

name

subject

score

兮辰

语文

85

兮辰

数学

92

兮辰

英语

98

兮辰

体育

91

无尽

语文

90

无尽

数学

89

无尽

英语

93

无尽

体育

86

...

...

...

首先生成示例数据

with tb as(select        name,        Chi,        Math,        Eng,        PE
fromvalues('兮辰',85,92,98,91),('无尽',90,89,93,86)                t(name,Chi,Math,Eng,PE))

方式1:使用union all,较为常用

select    name,    subject,    score
from(select name,'语文'as subject,Chi as score from tb
union all 
select name,'数学'as subject,Math as score from tb
union all 
select name,'英语'as subject,Eng as score from tb
union all 
select name,'体育'as subject,PE as score from tb
);--结果如下:name subject  score
兮辰  语文  85无尽  语文  90兮辰  数学  92无尽  数学  89兮辰  英语  98无尽  英语  93兮辰  体育  91无尽  体育  86

方式2:map函数+explode展开

select    name,    subject,    score
from(select            name,            map('语文',Chi,'数学',Math,'英语',Eng,'体育',PE
)as kv
from tb
) tmp 
lateral view explode(kv) t as subject,score;--结果如下:name subject  score
兮辰  体育  91兮辰  数学  92兮辰  英语  98兮辰  语文  85无尽  体育  86无尽  数学  89无尽  英语  93无尽  语文  90

方式3:使用trans_array函数:将一行数据转为多行的UDTF,将列中存储的以固定分隔符格式分隔的数组转为多行。具体使用方法见阿里云文档

https://help.aliyun.com/document_detail/48976.html?spm=a2c4g.11186623.6.834.7b052785nBNKFP#section-vxw-9dg-ypz

select    name,    split_part(subject,':',1)as subject,    split_part(subject,':',2)as result
from(select        trans_array(1,";",name,subject)as(name,subject)from(select            name,            concat('语文',':',Chi,';','数学',':',Math,';','英语',':',Eng,';','体育',':',PE)as subject
from tb
)tmp1
)tmp2;--结果如下:name  subject result
兮辰  语文  85兮辰  数学  92兮辰  英语  98兮辰  体育  91无尽  语文  90无尽  数学  89无尽  英语  93无尽  体育  86

上面的示例只是提供了一种思路,可能与具体的业务需求不同,有不同想法的欢迎交流。

拜了个拜

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
24天前
|
SQL 存储 分布式计算
【万字长文,建议收藏】《高性能ODPS SQL章法》——用古人智慧驾驭大数据战场
本文旨在帮助非专业数据研发但是有高频ODPS使用需求的同学们(如数分、算法、产品等)能够快速上手ODPS查询优化,实现高性能查数看数,避免日常工作中因SQL任务卡壳、失败等情况造成的工作产出delay甚至集群资源稳定性问题。
620 32
【万字长文,建议收藏】《高性能ODPS SQL章法》——用古人智慧驾驭大数据战场
|
2月前
|
SQL 分布式计算 大数据
SparkSQL 入门指南:小白也能懂的大数据 SQL 处理神器
在大数据处理的领域,SparkSQL 是一种非常强大的工具,它可以让开发人员以 SQL 的方式处理和查询大规模数据集。SparkSQL 集成了 SQL 查询引擎和 Spark 的分布式计算引擎,使得我们可以在分布式环境下执行 SQL 查询,并能利用 Spark 的强大计算能力进行数据分析。
|
3月前
|
SQL
SQL 如何将表中行列互换
本文介绍了在 SQL 中使用 PIVOT 和 UNPIVOT 实现行列互换的方法。通过实例展示了如何将学生各科成绩由行转为列,并强调使用 PIVOT 时需隐藏无关列以避免重复行。同时说明了数据类型转换及非数字数据的处理方式。
|
4月前
|
SQL 人工智能 分布式计算
别再只会写SQL了!这五个大数据趋势正在悄悄改变行业格局
别再只会写SQL了!这五个大数据趋势正在悄悄改变行业格局
58 0
|
6月前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
6月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
7月前
|
SQL 大数据 数据挖掘
玩转大数据:从零开始掌握SQL查询基础
玩转大数据:从零开始掌握SQL查询基础
268 35
|
11月前
|
SQL 算法 大数据
为什么大数据平台会回归SQL
在大数据领域,尽管非结构化数据占据了大数据平台80%以上的存储空间,结构化数据分析依然是核心任务。SQL因其广泛的应用基础和易于上手的特点成为大数据处理的主要语言,各大厂商纷纷支持SQL以提高市场竞争力。然而,SQL在处理复杂计算时表现出的性能和开发效率低下问题日益凸显,如难以充分利用现代硬件能力、复杂SQL优化困难等。为了解决这些问题,出现了像SPL这样的开源计算引擎,它通过提供更高效的开发体验和计算性能,以及对多种数据源的支持,为大数据处理带来了新的解决方案。
|
11月前
|
SQL 存储 算法
比 SQL 快出数量级的大数据计算技术
SQL 是大数据计算中最常用的工具,但在实际应用中,SQL 经常跑得很慢,浪费大量硬件资源。例如,某银行的反洗钱计算在 11 节点的 Vertica 集群上跑了 1.5 小时,而用 SPL 重写后,单机只需 26 秒。类似地,电商漏斗运算和时空碰撞任务在使用 SPL 后,性能也大幅提升。这是因为 SQL 无法写出低复杂度的算法,而 SPL 提供了更强大的数据类型和基础运算,能够实现高效计算。

热门文章

最新文章