Rust的Future、GO的Goroutine、Linux的Epoll高并发背后的殊途同归

简介: 今天我们继续高并发的话题,在上次的博客中我们有提到,Rust的Future机制非常有助于程序员按照更为自然、简洁的逻辑去设计系统,我们必须要知道高并发系统的关键在于立交桥的分流与导流构造而非信号灯的限流。因此把精力放在设计锁、互斥系这些信号系统上是非常事倍功半的。

今天我们继续高并发的话题,在上次的博客中我们有提到,Rust的Future机制非常有助于程序员按照更为自然、简洁的逻辑去设计系统,我们必须要知道高并发系统的关键在于立交桥的分流与导流构造而非信号灯的限流。因此把精力放在设计锁、互斥系这些信号系统上是非常事倍功半的。

从机制上来讲Rust从函数式语言借鉴而来的Future机制是先进的,而且从亲身教小孩编程的时候笔者意外发现,对于没有任何编程经验的人来说,他们学习async/await的成本,要比理解层层回调的机制要低得多。程序员在学习Future的难度大,其实完全是因为之前的历史包袱太重了。

为什么说Future更像自然语言

   在以下这段代码中,网络连接socket、请求发送request、响应接收response三个对象全部都是future类型的,也就是在代码执行之后不会被执行也没有值仅有占位的意义,当未来执行后才会有值返回,and_then方法其实是在future对象执行成功后才会被调用的方法,比如read_to_end这行代码就是在request对象执行成功后,调用read_to_end方法对读取结果。

use futures::Future;

use tokio_core::reactor::Core;

use tokio_core::net::TcpStream;

fn main() {

   let mut core = Core::new().unwrap();

    let addr = "127.0.0.1:8080".to_socket_addrs().unwrap().next().unwrap();

    let socket = TcpStream::connect(&addr, &core.handle());

    let request = socket.and_then(|socket|{

        tokio_core::io::write_all(socket, "Hello World".as_bytes())

    });

    let response = request.and_then(|(socket, _)| {

        tokio_core::io::read_to_end(socket, Vec::new())

    });

    let (_, data) = core.run(response).unwrap();

    println!("{}", String::from_utf8_lossy(&data));

}



而想象一下如果是传统编程所采用的方式,需要在网络连接完成后调用请求发送的回调函数,然后再请求发送的响应处理方法中再注册接收请求的回调函数,复杂不说还容易出错。

而future机制精髓之处在于,整个过程是通过core.run(response).unwrap();这行代码运行起来的,也就是说开发人员只需要关心最终的结果就可以了。从建立网络连接开始的调用链交给计算机去帮你完成,最终的效率反而还会更高。

并发中的poll模式到底是什么意思?

笔者看到不少博主在介绍Rust的Future等异步编程框架时都提到了Rust的Future采用poll模式,不过到底什么是poll模式却大多语焉不详。

笔者还是这样的观点,程序员群体之所以觉得future机制难以理解,其关键在于思维模式被计算机的各种回调机制给束缚住了,而忘记了最简单直接的方式。在解决这个问题之前我们先来问一个问题,假如让我们自己设计一个类似于goroutine之类事件高度管理器,应该如何入手?

最直接也是最容易想到的方案就是事件循环,定期遍历整个事件队列,把状态是ready的事件通知给对应的处理程序,这也是之前mfc和linux的select的方案,这实际上也就是select方案;另外一种做法是在事件中断处理程序中直接拿到处理程序的句柄,不再遍历整个事件队列,而是直接在中断处理响应中把通知发给对应处理进程,这就是Poll模式。

多路复用是另一种机制,这种机制可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。笔者在前文《这位创造了Github冠军项目的老男人,堪称10倍程序员本尊》中曾经介绍过Tdengine的定时器,其中就有这种多路复用的思想。由于操作系统timer的处理程序还不支持epoll的多路复用,因此每注册一个timer就必须要启动一个线程进行处理,资源浪费严重,因此Tdengine自己实现了一个多路复用的timer,可以做到一个线程同时处理多个timer,这些细节上的精巧设计也是Tdengine封神的原因之一。

Epoll的代价-少量连接场景不适用

当然epoll还有一个性能提升的关键点,那就是使用红黑树做为事件队列的存储模型,我们在上文《用了十年竟然都不对,Java、Rust、Go主流编程语言的哈希表比较》中曾经提到过,红黑树是一种解决哈希碰撞时比较好的退化选择,不过这也给epoll机制带来了一些适用场景的限制,如果连接总数本身就不高的情况下,那么epoll可能还不如select高效。其原因同时也在《用了十年竟然都不对,Java、Rust、Go主流编程语言的哈希表比较》中说明了,由于红黑树在内存中也是散列的状态,这就会造成连续存储的数据在总长度较小的情况下获得比红黑树更好的性能,具体这里就不加赘述了。

ET还是LT如何触发又是个选择

Epoll的触发又分为水平触发和垂直触发两种模式,具体介绍如下:

LT(level triggered)水平触发,是缺省的工作方式,顾名思义,也就是即使状态不变也可能模式通知的模式,同时支持阻塞和非阻塞两种方案.在这种做法中,内核通知注册的进程一个有任务已经就绪,不过这种模式下就算进程不作任何操作,内核还是会继续通知,所以这种模式属于唐僧式的模式,虽然唠叨但出BUG的可能性要小一点。

ET (edge-triggered),垂直触发,也就是当且仅当有任务状态发生变化时才会被触发,属于高速工作方式。在ET模式下仅当有事件从未就绪变为就绪时,内核才会触发通知。但是内核的通知只会发出一次,也就是说如果事件一直没有进程处理,内核也不会发送第二次通知。

其实从代码来看ET和LT的差别不多,具体如下:

if (epi->event.events & EPOLLONESHOT)              

   epi->event.events &= EP_PRIVATE_BITS;          

else if (!(epi->event.events & EPOLLET)) { //如果是是LT模式,当前事件会被重新放到epoll的就绪队列。              

list_add_tail(&epi->rdllink, &ep->rdllist);        

ep_pm_stay_awake(epi);

}



可以看到LT模式从不会丢弃事件,只要队列里还有数据能够读到,就会不断的发起通知,属于链式反应的一种,效率低点但不容易出错,而ET只在则只在新事件到来时才会发起通知,效率高但也容易出BUG。当然如果socketfd事件与处理线程之间是一对多的关系,也就是说一个socketfd只对应一个线程,那倒也还好说。但由于在很多高并发的场景下,很多socketfd是由多个进程同时监控的,因此这又会造成一个惊群的问题。

正如前文所说,多路复用机制也允许多个进程(线程)在等待同一个事件的到来,当这个 fd(socket)的事件发生的时候,这些睡眠的进程(线程)就会被同时唤醒,去处理这个事件,这和一大群鱼,争抢一个鱼食的现象非常类似,因此也就被称为"惊群"现象。

由于大量的进程计算资源被浪费在被抢食的过程中,实际上却没做任何有意义的工作,因此"惊群"效率低下,而且在鱼群抢食的过程中,会造成系统短暂的吞吐能力下降。对于流量分布极不均衡的系统来说,惊群的影响很大。

不过在LT模式下,通知是链式的,因此惊群难以避免,ET模式下效率虽多,但如果有一个进程出现问题,则很有可能造成难以察觉的BUG,高并发系统绝对是个说起来容易,做起来难的设计。

相关文章
|
2月前
|
安全 Go 数据处理
Go语言中的并发编程:掌握goroutine和channel的艺术####
本文深入探讨了Go语言在并发编程领域的核心概念——goroutine与channel。不同于传统的单线程执行模式,Go通过轻量级的goroutine实现了高效的并发处理,而channel作为goroutines之间通信的桥梁,确保了数据传递的安全性与高效性。文章首先简述了goroutine的基本特性及其创建方法,随后详细解析了channel的类型、操作以及它们如何协同工作以构建健壮的并发应用。此外,还介绍了select语句在多路复用中的应用,以及如何利用WaitGroup等待一组goroutine完成。最后,通过一个实际案例展示了如何在Go中设计并实现一个简单的并发程序,旨在帮助读者理解并掌
|
2月前
|
安全 Java Go
Go语言中的并发编程:掌握goroutine与通道的艺术####
本文深入探讨了Go语言中的核心特性——并发编程,通过实例解析goroutine和通道的高效使用技巧,旨在帮助开发者提升多线程程序的性能与可靠性。 ####
|
2月前
|
安全 Go 调度
探索Go语言的并发模型:goroutine与channel
在这个快节奏的技术世界中,Go语言以其简洁的并发模型脱颖而出。本文将带你深入了解Go语言的goroutine和channel,这两个核心特性如何协同工作,以实现高效、简洁的并发编程。
|
2月前
|
Go 调度 开发者
探索Go语言中的并发模式:goroutine与channel
在本文中,我们将深入探讨Go语言中的核心并发特性——goroutine和channel。不同于传统的并发模型,Go语言的并发机制以其简洁性和高效性著称。本文将通过实际代码示例,展示如何利用goroutine实现轻量级的并发执行,以及如何通过channel安全地在goroutine之间传递数据。摘要部分将概述这些概念,并提示读者本文将提供哪些具体的技术洞见。
|
2月前
|
安全 Go 调度
解密Go语言并发模型:CSP与goroutine的魔法
在本文中,我们将深入探讨Go语言的并发模型,特别是CSP(Communicating Sequential Processes)理论及其在Go中的实现——goroutine。我们将分析CSP如何为并发编程提供了一种清晰、简洁的方法,并通过goroutine展示Go语言在处理高并发场景下的独特优势。
|
3月前
|
安全 Go 调度
探索Go语言的并发之美:goroutine与channel
在这个快节奏的技术时代,Go语言以其简洁的语法和强大的并发能力脱颖而出。本文将带你深入Go语言的并发机制,探索goroutine的轻量级特性和channel的同步通信能力,让你在高并发场景下也能游刃有余。
|
3月前
|
存储 安全 Go
探索Go语言的并发模型:Goroutine与Channel
在Go语言的多核处理器时代,传统并发模型已无法满足高效、低延迟的需求。本文深入探讨Go语言的并发处理机制,包括Goroutine的轻量级线程模型和Channel的通信机制,揭示它们如何共同构建出高效、简洁的并发程序。
|
3月前
|
存储 Go 调度
深入理解Go语言的并发模型:goroutine与channel
在这个快速变化的技术世界中,Go语言以其简洁的并发模型脱颖而出。本文将带你穿越Go语言的并发世界,探索goroutine的轻量级特性和channel的同步机制。摘要部分,我们将用一段对话来揭示Go并发模型的魔力,而不是传统的介绍性文字。
|
3月前
|
安全 Go 调度
探索Go语言的并发模型:Goroutine与Channel的魔力
本文深入探讨了Go语言的并发模型,不仅解释了Goroutine的概念和特性,还详细讲解了Channel的用法和它们在并发编程中的重要性。通过实际代码示例,揭示了Go语言如何通过轻量级线程和通信机制来实现高效的并发处理。
|
3月前
|
安全 Go 调度
探索Go语言的并发之美:goroutine与channel的实践指南
在本文中,我们将深入探讨Go语言的并发机制,特别是goroutine和channel的使用。通过实际的代码示例,我们将展示如何利用这些工具来构建高效、可扩展的并发程序。我们将讨论goroutine的轻量级特性,channel的同步通信能力,以及它们如何共同简化并发编程的复杂性。