Taking advantage of context features

简介: In the featurization tutorial we incorporated multiple features beyond just user and movie identifiers into our models, but we haven't explored whether those features improve model accuracy.

In the featurization tutorial we incorporated multiple features beyond just user and movie identifiers into our models, but we haven't explored whether those features improve model accuracy.

Many factors affect whether features beyond ids are useful in a recommender model:

  1. Importance of context: if user preferences are relatively stable across contexts and time, context features may not provide much benefit. If, however, users preferences are highly contextual, adding context will improve the model significantly. For example, day of the week may be an important feature when deciding whether to recommend a short clip or a movie: users may only have time to watch short content during the week, but can relax and enjoy a full-length movie during the weekend. Similarly, query timestamps may play an important role in modelling popularity dynamics: one movie may be highly popular around the time of its release, but decay quickly afterwards. Conversely, other movies may be evergreens that are happily watched time and time again.
  2. Data sparsity: using non-id features may be critical if data is sparse. With few observations available for a given user or item, the model may struggle with estimating a good per-user or per-item representation. To build an accurate model, other features such as item categories, descriptions, and images have to be used to help the model generalize beyond the training data. This is especially relevant in cold-start situations, where relatively little data is available on some items or users.
import os
import tempfile

import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds

import tensorflow_recommenders as tfrs

We follow the featurization tutorial and keep the user id, timestamp, and movie title features.

ratings = tfds.load("movielens/100k-ratings", split="train")
movies = tfds.load("movielens/100k-movies", split="train")

ratings = ratings.map(lambda x: {
    "movie_title": x["movie_title"],
    "user_id": x["user_id"],
    "timestamp": x["timestamp"],
})
movies = movies.map(lambda x: x["movie_title"])

We also do some housekeeping to prepare feature vocabularies.

timestamps = np.concatenate(list(ratings.map(lambda x: x["timestamp"]).batch(100)))

max_timestamp = timestamps.max()
min_timestamp = timestamps.min()

timestamp_buckets = np.linspace(
    min_timestamp, max_timestamp, num=1000,
)

unique_movie_titles = np.unique(np.concatenate(list(movies.batch(1000))))
unique_user_ids = np.unique(np.concatenate(list(ratings.batch(1_000).map(
    lambda x: x["user_id"]))))

Model definition

Query model

We start with the user model defined in the featurization tutorial as the first layer of our model, tasked with converting raw input examples into feature embeddings. However, we change it slightly to allow us to turn timestamp features on or off. This will allow us to more easily demonstrate the effect that timestamp features have on the model. In the code below, the use_timestamps parameter gives us control over whether we use timestamp features.

class UserModel(tf.keras.Model):

  def __init__(self, use_timestamps):
    super().__init__()

    self._use_timestamps = use_timestamps

    self.user_embedding = tf.keras.Sequential([
        tf.keras.layers.experimental.preprocessing.StringLookup(
            vocabulary=unique_user_ids, mask_token=None),
        tf.keras.layers.Embedding(len(unique_user_ids) + 1, 32),
    ])

    if use_timestamps:
      self.timestamp_embedding = tf.keras.Sequential([
          tf.keras.layers.experimental.preprocessing.Discretization(timestamp_buckets.tolist()),
          tf.keras.layers.Embedding(len(timestamp_buckets) + 1, 32),
      ])
      self.normalized_timestamp = tf.keras.layers.experimental.preprocessing.Normalization()

      self.normalized_timestamp.adapt(timestamps)

  def call(self, inputs):
    if not self._use_timestamps:
      return self.user_embedding(inputs["user_id"])

    return tf.concat([
        self.user_embedding(inputs["user_id"]),
        self.timestamp_embedding(inputs["timestamp"]),
        self.normalized_timestamp(inputs["timestamp"]),
    ], axis=1)

Note that our use of timestamp features in this tutorial interacts with our choice of training-test split in an undesirable way. Because we have split our data randomly rather than chronologically (to ensure that events that belong to the test dataset happen later than those in the training set), our model can effectively learn from the future. This is unrealistic: after all, we cannot train a model today on data from tomorrow.

This means that adding time features to the model lets it learn future interaction patterns. We do this for illustration purposes only: the MovieLens dataset itself is very dense, and unlike many real-world datasets does not benefit greatly from features beyond user ids and movie titles.

This caveat aside, real-world models may well benefit from other time-based features such as time of day or day of the week, especially if the data has strong seasonal patterns.

Candidate model

For simplicity, we'll keep the candidate model fixed. Again, we copy it from the featurization tutorial:

class MovieModel(tf.keras.Model):

  def __init__(self):
    super().__init__()

    max_tokens = 10_000

    self.title_embedding = tf.keras.Sequential([
      tf.keras.layers.experimental.preprocessing.StringLookup(
          vocabulary=unique_movie_titles, mask_token=None),
      tf.keras.layers.Embedding(len(unique_movie_titles) + 1, 32)
    ])

    self.title_vectorizer = tf.keras.layers.experimental.preprocessing.TextVectorization(
        max_tokens=max_tokens)

    self.title_text_embedding = tf.keras.Sequential([
      self.title_vectorizer,
      tf.keras.layers.Embedding(max_tokens, 32, mask_zero=True),
      tf.keras.layers.GlobalAveragePooling1D(),
    ])

    self.title_vectorizer.adapt(movies)

  def call(self, titles):
    return tf.concat([
        self.title_embedding(titles),
        self.title_text_embedding(titles),
    ], axis=1)

Combined model

With both UserModel and MovieModel defined, we can put together a combined model and implement our loss and metrics logic.

Note that we also need to make sure that the query model and candidate model output embeddings of compatible size. Because we'll be varying their sizes by adding more features, the easiest way to accomplish this is to use a dense projection layer after each model:

class MovielensModel(tfrs.models.Model):

  def __init__(self, use_timestamps):
    super().__init__()
    self.query_model = tf.keras.Sequential([
      UserModel(use_timestamps),
      tf.keras.layers.Dense(32)
    ])
    self.candidate_model = tf.keras.Sequential([
      MovieModel(),
      tf.keras.layers.Dense(32)
    ])
    self.task = tfrs.tasks.Retrieval(
        metrics=tfrs.metrics.FactorizedTopK(
            candidates=movies.batch(128).map(self.candidate_model),
        ),
    )

  def compute_loss(self, features, training=False):
    # We only pass the user id and timestamp features into the query model. This
    # is to ensure that the training inputs would have the same keys as the
    # query inputs. Otherwise the discrepancy in input structure would cause an
    # error when loading the query model after saving it.
    query_embeddings = self.query_model({
        "user_id": features["user_id"],
        "timestamp": features["timestamp"],
    })
    movie_embeddings = self.candidate_model(features["movie_title"])

    return self.task(query_embeddings, movie_embeddings)

Experiments

Prepare the data

We first split the data into a training set and a testing set.

tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)

cached_train = train.shuffle(100_000).batch(2048)
cached_test = test.batch(4096).cache()

Baseline: no timestamp features

We're ready to try out our first model: let's start with not using timestamp features to establish our baseline.

model = MovielensModel(use_timestamps=False)
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))

model.fit(cached_train, epochs=3)

train_accuracy = model.evaluate(
    cached_train, return_dict=True)["factorized_top_k/top_100_categorical_accuracy"]
test_accuracy = model.evaluate(
    cached_test, return_dict=True)["factorized_top_k/top_100_categorical_accuracy"]

print(f"Top-100 accuracy (train): {train_accuracy:.2f}.")
print(f"Top-100 accuracy (test): {test_accuracy:.2f}.")

This gives us a baseline top-100 accuracy of around 0.2

Capturing time dynamics with time features

Do the result change if we add time features?

model = MovielensModel(use_timestamps=True)
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))

model.fit(cached_train, epochs=3)

train_accuracy = model.evaluate(
    cached_train, return_dict=True)["factorized_top_k/top_100_categorical_accuracy"]
test_accuracy = model.evaluate(
    cached_test, return_dict=True)["factorized_top_k/top_100_categorical_accuracy"]

print(f"Top-100 accuracy (train): {train_accuracy:.2f}.")
print(f"Top-100 accuracy (test): {test_accuracy:.2f}.")

This is quite a bit better: not only is the training accuracy much higher, but the test accuracy is also substantially improved.

代码链接: https://codechina.csdn.net/csdn_codechina/enterprise_technology/-/blob/master/NLP_recommend/Taking%20advantage%20of%20context%20features.ipynb

目录
相关文章
RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
2530 0
|
4月前
|
TensorFlow 算法框架/工具
【Tensorflow】解决A `Concatenate` layer should be called on a list of at least 2 inputs
在TensorFlow 2.0中,使用Concatenate函数时出现错误,可以通过替换为tf.concat 来解决。
46 4
|
7月前
解决Error:All flavors must now belong to a named flavor dimension. Learn more at https://d.android.com
解决Error:All flavors must now belong to a named flavor dimension. Learn more at https://d.android.com
130 5
|
存储 机器学习/深度学习 人工智能
PTPCG: Efficient Document-level Event Extraction via Pseudo-Trigger-aware Pruned Complete Graph论文解读
据我们所知,我们目前的方法是第一项研究在DEE中使用某些论元作为伪触发词的效果的工作,我们设计了一个指标来帮助自动选择一组伪触发词。此外,这种度量也可用于度量DEE中带标注触发词的质量。
131 1
|
机器学习/深度学习 数据挖掘
ACL2023 - An AMR-based Link Prediction Approach for Document-level Event Argument Extraction
最近的工作引入了用于文档级事件论元提取(文档级EAE)的抽象语义表示(AMR),因为AMR提供了对复杂语义结构的有用解释,并有助于捕获长距离依赖关系
198 0
|
自然语言处理 Java 计算机视觉
ACL2023 - AMPERE: AMR-Aware Prefix for Generation-Based Event Argument Extraction Model
事件论元抽取(EAE)识别给定事件的事件论元及其特定角色。最近在基于生成的EAE模型方面取得的进展显示出了与基于分类的模型相比的良好性能和可推广性
187 0
|
机器学习/深度学习 自然语言处理 算法
Joint Information Extraction with Cross-Task and Cross-Instance High-Order Modeling 论文解读
先前的信息抽取(IE)工作通常独立地预测不同的任务和实例(例如,事件触发词、实体、角色、关系),而忽略了它们的相互作用,导致模型效率低下。
97 0
|
机器学习/深度学习 数据采集 自然语言处理
Efficient Zero-shot Event Extraction with Context-Definition Alignment论文解读
事件抽取(EE)是从文本中识别感兴趣的事件提及的任务。传统的工作主要以监督的方式为主。然而,这些监督的模型不能概括为预定义本体之外的事件类型。
107 0
|
机器学习/深度学习 PyTorch 算法框架/工具
【完美解决】RuntimeError: one of the variables needed for gradient computation has been modified by an inp
将loss.backward()函数内的参数retain_graph值设置为True, loss.backward(retain_graph=True),如果retain_graph设置为False,计算过程中的中间变量使用完即被释放掉。
1664 0
|
自然语言处理
Reading the Manual: Event Extraction as Definition Comprehension, EMNLP 2020
Reading the Manual: Event Extraction as Definition Comprehension, EMNLP 2020
91 0
Reading the Manual: Event Extraction as Definition Comprehension, EMNLP 2020