数据湖实操讲解【 JindoTable 计算加速】第二十二讲:对 Hive 数仓表进行高效小文件合并

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 数据湖 JindoFS+OSS 实操干货 36讲 每周二16点准时直播! 扫文章底部二维码入钉群,线上准时观看~ Github链接: https://github.com/aliyun/alibabacloud-jindofs

本期导读 :【JindoTable 计算加速】第二十二讲


主题:对 Hive 数仓表进行高效小文件合并d+JindoFSOSS 上数据进行训练加速

讲师:辰石,阿里巴巴计算平台事业部 技术专家


内容框架:

  • 背景介绍
  • 主要功能
  • 实操演示


直播回放链接:(22讲)

https://developer.aliyun.com/live/247112

一、背景介绍

小文件如何产生    

  • 动态分区插入数据,产生大量的小文件,从而导致 map 数量剧增
  • reduce 数量越多,小文件也越多( reduce 的个数和输出文件是对应的)
  • 数据源本身就包含大量的小文件

小文件带来的问题    

  • 小文件会开很多 map,一个 map 开一个 JVM 去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能
  • 小文件会给底层文件系统带来很大压力, 如在 HDFS 中,每个小文件对象约占150 byte,如果小文件过多会占用大量内存。这样 NameNode 内存容量严重制约了集群的扩展。

小文件解决方案

  • 从小文件产生的途经就可以从源头上控制小文件数量

   • 使用 Sequencefile 作为表存储格式,不要用 textfile,在一定程度上可以减少小文    

   • 减少 reduce 的数量(可以使用参数进行控制)

   • 少用动态分区,用时记得按 distribute by 分区

  • 对于已有的小文件,我们可以通过以下几种方案解决

   • 通过参数进行调节,设置 map/reduce 端的相关参数

   • 重建表,建表时减少 reduce 数量

   • 使用 hadoop archive 命令把小文件进行归档

二、主要功能

JindoTable

  • JindoTable 提供表或分区级别的热度统计、存储分层和表文件优化的功能,常见命令如下

   • -accessStat/-leastUseStat

   • -cache/-uncache/-archive/-unarchive/-archiveTable/-unarchiveTable/-status

   • -optimize

   • -showTable/-showPartition/-listTables

   • -dumpmc

   • -moveTo

Hive表小文件合并

  • Jindo table –showTable/-showPartition –t <db.tablename> -p <partitionSpec> 显示表格或者分区的状态,如果表文件过小会提示文件过小

image.png

image.png

  • Jindo table –optimize <db.tablename> 优化表存储层的数据组织

image.png

  • Jindo table –optimize <db.tablename> 优化后检查表的状态以及目录格式如下

image.png

image.png


三、实操演示


  • 对 hive 数仓表进行小文件高效合并演示





点击回放链接,直接观看第22讲视频回放,获取讲师实例讲解:

   https://developer.aliyun.com/live/247112




Github链接:

https://github.com/aliyun/alibabacloud-jindofs


不错过每次直播信息、探讨更多数据湖 JindoFS+OSS 相关技术问题,欢迎扫码加入钉钉交流群!

69c0a02cc68742fca5d49d92413dc67a.png

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
4天前
|
SQL 数据库 HIVE
hive数仓 ods层增量数据导入
根据业务需求,当表数据量超过10万条时采用增量数据导入,否则全量导入。增量导入基于`create_date`和`modify_date`字段进行,并确保时间字段已建立索引以提升查询效率。避免在索引字段上执行函数操作。创建增量表和全量表,并按日期进行分区。首次导入全量数据,后续每日新增或变更数据保存在增量表中,通过全量表与增量表的合并保持数据一致性。
22 13
|
1月前
|
DataWorks 调度 数据库
实时数仓 Hologres产品使用合集之通用和计算组型有什么区别
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
4月前
|
存储 数据挖掘 大数据
大数据数仓建模基础理论【维度表、事实表、数仓分层及示例】
数据仓库建模是组织和设计数据以支持数据分析的过程,包括ER模型和维度建模。ER模型通过实体和关系描述数据结构,遵循三范式减少冗余。维度建模,特别是Kimball方法,用于数据仓库设计,便于分析和报告。事实表存储业务度量,如销售数据,分为累积、快照、事务和周期性快照类型。维度表提供描述性信息,如时间、产品、地点和客户详情。数仓通常分层为ODS(源数据)、DWD(明细数据)、DIM(公共维度)、DWS(数据汇总)和ADS(应用数据),以优化数据管理、质量、查询性能和适应性。
|
4月前
|
SQL 数据采集 分布式计算
Hive 数仓及数仓设计方案
数仓整合企业数据,提供统一出口,用于数据治理。其特点包括面向主题集成和主要支持查询操作。数仓设计涉及需求分析(如咨询老板、运营人员和行业专家)、确定主题指标(如电商的转化率)、数据标准设定、规模与成本计算、技术选型(如Hadoop生态组件)以及数据采集和操作。设计流程涵盖从理解需求到实施SQL函数和存储过程的全过程。
82 3
|
11月前
|
SQL 分布式计算 API
轻松驾驭Hive数仓,数据分析从未如此简单!
轻松驾驭Hive数仓,数据分析从未如此简单!
196 1
|
11月前
|
存储 数据挖掘 关系型数据库
数仓学习---6、数据仓库概述、 数据仓库建模概述、维度建模理论之事实表、维度建模理论之维度表
数仓学习---6、数据仓库概述、 数据仓库建模概述、维度建模理论之事实表、维度建模理论之维度表
|
4月前
|
数据挖掘 数据库
离线数仓6.0--- 数据仓库 ER模型-范式理论,维度模型、维度建模理论之事实表、维度建模理论之维度表
离线数仓6.0--- 数据仓库 ER模型-范式理论,维度模型、维度建模理论之事实表、维度建模理论之维度表
217 0
|
4月前
|
存储 SQL 分布式计算
Hadoop(HDFS+MapReduce+Hive+数仓基础概念)学习笔记(自用)
Hadoop(HDFS+MapReduce+Hive+数仓基础概念)学习笔记(自用)
452 0
|
数据采集 SQL 监控
Hive 数仓数据质量治理
Hive 数仓数据质量治理
332 0
【SQL开发实战技巧】系列(二十五):数仓报表场景☞结果集中的重复数据只显示一次以及计算部门薪资差异高效的写法以及如何对数据进行快速分组
本篇文章讲解的主要内容是:***如何使用lag函数让结果集重复数据只显示一次、用行转列pivot写法优化部门之间计算工资差异类似需求、如何通过ceil函数对已有数据进行分组打印、放假安排团队分组值班,如何通过ntile()over(order by )快速进行人员分组***
【SQL开发实战技巧】系列(二十五):数仓报表场景☞结果集中的重复数据只显示一次以及计算部门薪资差异高效的写法以及如何对数据进行快速分组