Basic classification: Classify images of clothing

简介: This guide trains a neural network model to classify images of clothing, like sneakers and shirts.

This guide trains a neural network model to classify images of clothing, like sneakers and shirts.

This guide uses tf.keras, a high-level API to build and train models in TensorFlow.

# TensorFlow and tf.keras
import tensorflow as tf

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt

print(tf.__version__)

Import the Fashion MNIST dataset

This guide uses the Fashion MNIST dataset which contains 70,000 grayscale images in 10 categories. The images show individual articles of clothing at low resolution (28 by 28 pixels), as seen here:

Fashion MNIST is intended as a drop-in replacement for the classic MNIST dataset—often used as the "Hello, World" of machine learning programs for computer vision. The MNIST dataset contains images of handwritten digits (0, 1, 2, etc.) in a format identical to that of the articles of clothing you'll use here.

This guide uses Fashion MNIST for variety, and because it's a slightly more challenging problem than regular MNIST. Both datasets are relatively small and are used to verify that an algorithm works as expected. They're good starting points to test and debug code.

Here, 60,000 images are used to train the network and 10,000 images to evaluate how accurately the network learned to classify images. You can access the Fashion MNIST directly from TensorFlow. Import and load the Fashion MNIST data directly from TensorFlow:

fashion_mnist = tf.keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

The images are 28x28 NumPy arrays, with pixel values ranging from 0 to 255. The labels are an array of integers, ranging from 0 to 9. These correspond to the class of clothing the image represents:

Label Class
0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

Each image is mapped to a single label. Since the class names are not included with the dataset, store them here to use later when plotting the images:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

Preprocess the data

Scale these values to a range of 0 to 1 before feeding them to the neural network model. To do so, divide the values by 255. It's important that the training set and the testing set be preprocessed in the same way:

train_images = train_images / 255.0

test_images = test_images / 255.0

Build the model

Building the neural network requires configuring the layers of the model, then compiling the model.

Set up the layers

The basic building block of a neural network is the layer. Layers extract representations from the data fed into them. Hopefully, these representations are meaningful for the problem at hand.

Most of deep learning consists of chaining together simple layers. Most layers, such as tf.keras.layers.Dense, have parameters that are learned during training.

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10)
])

The first layer in this network, tf.keras.layers.Flatten, transforms the format of the images from a two-dimensional array (of 28 by 28 pixels) to a one-dimensional array (of 28 * 28 = 784 pixels). Think of this layer as unstacking rows of pixels in the image and lining them up. This layer has no parameters to learn; it only reformats the data.

After the pixels are flattened, the network consists of a sequence of two tf.keras.layers.Dense layers. These are densely connected, or fully connected, neural layers. The first Dense layer has 128 nodes (or neurons). The second (and last) layer returns a logits array with length of 10. Each node contains a score that indicates the current image belongs to one of the 10 classes.

Compile the model

Before the model is ready for training, it needs a few more settings. These are added during the model's compile step:

  • Loss function —This measures how accurate the model is during training. You want to minimize this function to "steer" the model in the right direction.
  • Optimizer —This is how the model is updated based on the data it sees and its loss function.
  • Metrics —Used to monitor the training and testing steps. The following example uses accuracy, the fraction of the images that are correctly classified.
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

Train the model

Training the neural network model requires the following steps:

  1. Feed the training data to the model. In this example, the training data is in the train_images and train_labels arrays.
  2. The model learns to associate images and labels.
  3. You ask the model to make predictions about a test set—in this example, the test_images array.
  4. Verify that the predictions match the labels from the test_labels array.

Feed the model

To start training, call the model.fit method—so called because it "fits" the model to the training data:

model.fit(train_images, train_labels, epochs=10)

As the model trains, the loss and accuracy metrics are displayed.

Evaluate accuracy

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

print('Test accuracy:', test_acc)

It turns out that the accuracy on the test dataset is a little less than the accuracy on the training dataset. This gap between training accuracy and test accuracy represents overfitting. Overfitting happens when a machine learning model performs worse on new, previously unseen inputs than it does on the training data. An overfitted model "memorizes" the noise and details in the training dataset to a point where it negatively impacts the performance of the model on the new data

Make predictions

With the model trained, you can use it to make predictions about some images. The model's linear outputs, logits. Attach a softmax layer to convert the logits to probabilities, which are easier to interpret.

probability_model = tf.keras.Sequential([model, 
                                         tf.keras.layers.Softmax()])

predictions = probability_model.predict(test_images)

Use the trained model

Finally, use the trained model to make a prediction about a single image.

# Grab an image from the test dataset.
img = test_images[1]

print(img.shape)

tf.keras models are optimized to make predictions on a batch, or collection, of examples at once. Accordingly, even though you're using a single image, you need to add it to a list:

# Add the image to a batch where it's the only member.
img = (np.expand_dims(img,0))

print(img.shape)

Now predict the correct label for this image:

predictions_single = probability_model.predict(img)

print(predictions_single)

代码链接: https://codechina.csdn.net/csdn_codechina/enterprise_technology/-/blob/master/CV_Classification/Basic%20classification:%20Classify%20images%20of%20clothing.ipynb

目录
相关文章
|
6月前
|
算法 BI 计算机视觉
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
62 1
|
数据挖掘
【提示学习】Automatic Multi-Label Prompting: Simple and Interpretable Few-Shot Classification
文章提出了一种简单确高效地构建verbalization的方法:
|
数据挖掘
【提示学习】Prompt Tuning for Multi-Label Text Classification: How to Link Exercises to Knowledge Concept
文章这里使用的是BCEWithLogitsLoss,它适用于多标签分类。即:把[MASK]位置预测到的词表的值进行sigmoid,取指定阈值以上的标签,然后算损失。
|
机器学习/深度学习 编解码 人工智能
Text to image综述阅读(2)A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis
这是一篇用GAN做文本生成图像(Text to Image)的综述阅读报告。 综述名为:《A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis》,发表于2019年,其将文本生成图像分类为Semantic Enhancement GANs, Resolution Enhancement GANs, Diversity Enhancement GANs, Motion Enhancement GANs四类,并且介绍了代表性model。
Text to image综述阅读(2)A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis
|
机器学习/深度学习 自然语言处理 数据可视化
M2E2: Cross-media Structured Common Space for Multimedia Event Extraction 论文解读
我们介绍了一个新的任务,多媒体事件抽取(M2E2),旨在从多媒体文档中抽取事件及其参数。我们开发了第一个基准测试
105 0
|
机器学习/深度学习 安全
A Lightweight and Accurate Recognition Framework for Signs of X-ray Weld Images
在质量检测行业中,x射线图像是保证设备安全的常用手段。x射线焊缝图像标识识别在制造业数字化溯源系统中起着至关重要的作用。焊缝图像中物体的尺度差异较大,难以实现理想的识别。
151 0
|
机器学习/深度学习 算法 数据挖掘
【多标签文本分类】Improved Neural Network-based Multi-label Classification with Better Initialization ……
【多标签文本分类】Improved Neural Network-based Multi-label Classification with Better Initialization ……
127 0
【多标签文本分类】Improved Neural Network-based Multi-label Classification with Better Initialization ……
|
数据挖掘
【多标签文本分类】Initializing neural networks for hierarchical multi-label text classification
【多标签文本分类】Initializing neural networks for hierarchical multi-label text classification
115 0
【多标签文本分类】Initializing neural networks for hierarchical multi-label text classification
|
机器学习/深度学习 传感器 编解码
Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Self-Supe
Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Self-Supe
98 0
Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Self-Supe
|
机器学习/深度学习 编解码 文字识别
Hybrid Multiple Attention Network for Semantic Segmentation in Aerial Images(一)
Hybrid Multiple Attention Network for Semantic Segmentation in Aerial Images
152 0
Hybrid Multiple Attention Network for Semantic Segmentation in Aerial Images(一)