Basic classification: Classify images of clothing

简介: This guide trains a neural network model to classify images of clothing, like sneakers and shirts.

This guide trains a neural network model to classify images of clothing, like sneakers and shirts.

This guide uses tf.keras, a high-level API to build and train models in TensorFlow.

# TensorFlow and tf.keras
import tensorflow as tf

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt

print(tf.__version__)

Import the Fashion MNIST dataset

This guide uses the Fashion MNIST dataset which contains 70,000 grayscale images in 10 categories. The images show individual articles of clothing at low resolution (28 by 28 pixels), as seen here:

Fashion MNIST is intended as a drop-in replacement for the classic MNIST dataset—often used as the "Hello, World" of machine learning programs for computer vision. The MNIST dataset contains images of handwritten digits (0, 1, 2, etc.) in a format identical to that of the articles of clothing you'll use here.

This guide uses Fashion MNIST for variety, and because it's a slightly more challenging problem than regular MNIST. Both datasets are relatively small and are used to verify that an algorithm works as expected. They're good starting points to test and debug code.

Here, 60,000 images are used to train the network and 10,000 images to evaluate how accurately the network learned to classify images. You can access the Fashion MNIST directly from TensorFlow. Import and load the Fashion MNIST data directly from TensorFlow:

fashion_mnist = tf.keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

The images are 28x28 NumPy arrays, with pixel values ranging from 0 to 255. The labels are an array of integers, ranging from 0 to 9. These correspond to the class of clothing the image represents:

Label Class
0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

Each image is mapped to a single label. Since the class names are not included with the dataset, store them here to use later when plotting the images:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

Preprocess the data

Scale these values to a range of 0 to 1 before feeding them to the neural network model. To do so, divide the values by 255. It's important that the training set and the testing set be preprocessed in the same way:

train_images = train_images / 255.0

test_images = test_images / 255.0

Build the model

Building the neural network requires configuring the layers of the model, then compiling the model.

Set up the layers

The basic building block of a neural network is the layer. Layers extract representations from the data fed into them. Hopefully, these representations are meaningful for the problem at hand.

Most of deep learning consists of chaining together simple layers. Most layers, such as tf.keras.layers.Dense, have parameters that are learned during training.

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10)
])

The first layer in this network, tf.keras.layers.Flatten, transforms the format of the images from a two-dimensional array (of 28 by 28 pixels) to a one-dimensional array (of 28 * 28 = 784 pixels). Think of this layer as unstacking rows of pixels in the image and lining them up. This layer has no parameters to learn; it only reformats the data.

After the pixels are flattened, the network consists of a sequence of two tf.keras.layers.Dense layers. These are densely connected, or fully connected, neural layers. The first Dense layer has 128 nodes (or neurons). The second (and last) layer returns a logits array with length of 10. Each node contains a score that indicates the current image belongs to one of the 10 classes.

Compile the model

Before the model is ready for training, it needs a few more settings. These are added during the model's compile step:

  • Loss function —This measures how accurate the model is during training. You want to minimize this function to "steer" the model in the right direction.
  • Optimizer —This is how the model is updated based on the data it sees and its loss function.
  • Metrics —Used to monitor the training and testing steps. The following example uses accuracy, the fraction of the images that are correctly classified.
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

Train the model

Training the neural network model requires the following steps:

  1. Feed the training data to the model. In this example, the training data is in the train_images and train_labels arrays.
  2. The model learns to associate images and labels.
  3. You ask the model to make predictions about a test set—in this example, the test_images array.
  4. Verify that the predictions match the labels from the test_labels array.

Feed the model

To start training, call the model.fit method—so called because it "fits" the model to the training data:

model.fit(train_images, train_labels, epochs=10)

As the model trains, the loss and accuracy metrics are displayed.

Evaluate accuracy

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

print('Test accuracy:', test_acc)

It turns out that the accuracy on the test dataset is a little less than the accuracy on the training dataset. This gap between training accuracy and test accuracy represents overfitting. Overfitting happens when a machine learning model performs worse on new, previously unseen inputs than it does on the training data. An overfitted model "memorizes" the noise and details in the training dataset to a point where it negatively impacts the performance of the model on the new data

Make predictions

With the model trained, you can use it to make predictions about some images. The model's linear outputs, logits. Attach a softmax layer to convert the logits to probabilities, which are easier to interpret.

probability_model = tf.keras.Sequential([model, 
                                         tf.keras.layers.Softmax()])

predictions = probability_model.predict(test_images)

Use the trained model

Finally, use the trained model to make a prediction about a single image.

# Grab an image from the test dataset.
img = test_images[1]

print(img.shape)

tf.keras models are optimized to make predictions on a batch, or collection, of examples at once. Accordingly, even though you're using a single image, you need to add it to a list:

# Add the image to a batch where it's the only member.
img = (np.expand_dims(img,0))

print(img.shape)

Now predict the correct label for this image:

predictions_single = probability_model.predict(img)

print(predictions_single)

代码链接: https://codechina.csdn.net/csdn_codechina/enterprise_technology/-/blob/master/CV_Classification/Basic%20classification:%20Classify%20images%20of%20clothing.ipynb

目录
相关文章
|
OLAP 数据库 索引
59.【clickhouse】ClickHouse从入门到放弃-分区表
【clickhouse】ClickHouse从入门到放弃-分区表
59.【clickhouse】ClickHouse从入门到放弃-分区表
|
12月前
|
Shell Go API
Go语言grequests库并发请求的实战案例
Go语言grequests库并发请求的实战案例
|
11月前
|
Java Maven
Maven 依赖管理
Maven 一个核心的特性就是依赖管理。当我们处理多模块的项目(包含成百上千个模块或者子项目),模块间的依赖关系就变得非常复杂,管理也变得很困难。针对此种情形,Maven 提供了一种高度控制的方法。
399 5
|
11月前
|
弹性计算 Linux Windows
跨账号和同账号的ECS云服务器之间迁移教程
跨账号和同账号的ECS云服务器之间迁移教程
|
SQL 存储 JSON
Hive 解析 JSON 字符串数据的实现方式
Hive 提供 `get_json_object` 函数解析 JSON 字符串,如 `{"database":"maxwell"}`。`path` 参数使用 `$`、`.`、`[]` 和 `*` 来提取数据。示例中展示了如何解析复杂 JSON 并存储到表中。此外,Hive 3.0.0及以上版本内置 `JsonSerDe` 支持直接处理 JSON 文件,无需手动解析。创建表时指定 `JsonSerDe` 序列化器,并在 HDFS 上存放 JSON 文件,可以直接查询字段内容,方便快捷。
814 3
|
Java Maven
SpringBoot项目接入Jco调用SAP接口遇到的问题
在SpringBoot项目中接入SAP接口通过Jco时遇到两个主要问题。首先,Jco不允许重命名或重新打包"sapjco3.jar",解决方案是将jar安装到本地和服务器的Maven仓库,配置pom.xml避免打包,并在服务器上更新环境变量。其次,调用后需释放`DestinationDataProvider`以防止异常。此外,调用SAP函数的步骤包括设置入参、执行和获取结果,涉及字段、结构和表类型的数据操作。
969 0
|
编解码 Windows
Camtasia Studio2023最新永久版安装包下载
coco玛奇朵这里给大家分享的是Camtasia Studio2023软件,Camtasia Studio一是款专业录制电脑屏幕的软件。我最近在百度上搜索寻找安装Camtasia Studio最新版本,需要付费,不然只能试用,很懊恼!!!于是,我找遍了各大网站终于找到出路了,找到一版本可以免费Camtasia Studio可以汉化后使用,不影响所有功能。这个我可是耗费了一周的时间哟!本来都想放弃了。现在给需要用的朋友们分享一下!Camtasia 下载:http://t.csdn.cn/GMjzv
816 1
|
小程序 JavaScript 前端开发
微信小程序 地图选点 获取用户选择的定位信息 wx.chooseLocation
微信小程序 地图选点 获取用户选择的定位信息 wx.chooseLocation
905 0
|
SQL HIVE
Hive创建分区表常用指令
Hive创建分区表常用指令
724 0
|
SQL 消息中间件 缓存
基于 Flink SQL CDC 的实时数据同步方案
Flink 1.11 引入了 Flink SQL CDC,CDC 能给我们数据和业务间能带来什么变化?本文由 Apache Flink PMC,阿里巴巴技术专家伍翀 (云邪)分享,内容将从传统的数据同步方案,基于 Flink CDC 同步的解决方案以及更多的应用场景和 CDC 未来开发规划等方面进行介绍和演示。
基于 Flink SQL CDC 的实时数据同步方案