大数据推进个性化医疗的五大原因

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

大数据,由于与医疗保健相关,已经出现在个性化医疗革命的中心。简单地说,数据的增长给诊断精准性的提高提供了巨大的可能性,因为研究人员能够深入探寻从而创造更多的,尤其是在分子和组织水平的,有针对性的治疗。



美国Definiens公司是生命科学领域里,对生物标志物诊断和医疗保健行业的定量数字化病理图像分析和数据挖掘解决方案的领先供应商。该公司的首席执行官,托马斯黑德勒,和我们探讨了大数据推进个性化医疗事业的五大原因。


1. 能解开未知


科技可以帮助我们从实验样品和活组织切片中获取大量的数据。这就使我们有机会发现与疾病相关的未知因子,并用来当作药物靶点或疾病分子标记。数据还可以用来帮助揭示疾病尤其是癌症的复杂性,从而为每个患者找到不同的药物及治疗方案。


2. 能关联多种诊断信息来源并制定治疗方案


来自临床结果、遗传图谱和组织形态的大数据分析将是个性化医学的一大动力。随着我们对来自不同来源的数据对比整合,为每个患者量身定制治疗方案也将成为可能。


3. 能更多基于事实而非主观理解作出治疗决定


传统而言,大多数诊断是通过显微镜观察活检样本然后给出主观视觉分析。这样根据每位临床医生的具体背景和经验,他们的诊断就有可能不同。因此,对患者样品经常要求多次“第二意见”。病人病理样本的数据化,也就是从定性样品中提取多次离散数据点,就会产生广阔数据量,以便用来进行统计分析,并迅速做出切实可行的临床诊断和治疗建议。


4. 能对组织切片和基因组信息进行系统分析


通过患者的组织切片和特定基因组信息,临床医生可以避免多轮测试,而系统地提取每个病人的详细信息。因为同时拥有所有可用信息从而确定诊断和患者预后,医生就能够以更快的速度在个体基础上给出最好的治疗决定。


5. 临床医师能在自身以及与其他医师之间高度重复


临床上测试结果再现非常重要。每名临床医师在不同的时间应该都能够做出相同的诊断,医师之间也应该同样给出相同的诊断结果。通过使用从临床样本和测试所产生的大数据,测试结果的持续重复性更加可能,临床医师和医生也就能够给出更准确的诊断判断以及更合适的治疗选择。


附原文:

Top Five Reasons Big Data Is Advancing Personalized Medicine


Big Data as it pertains to health care has emerged at the center of the revolution in personalized medicine. Simply put, the proliferation of data offers great possibilities for more precise diagnosis, as researchers are able to drill down to see what’s happening and create more targeted therapies, specifically at the molecular and tissue levels.


In this slideshow, Thomas Heydler, CEO of Definiens, a leading provider of image analysis and data mining solutions for quantitative digital pathology in the life sciences, diagnostic biomarkers and health care industries, explores the top five reasons Big Data is advancing personalized medicine as we know it.


  1. Exposing the unknown


Technologies that can now extract large amounts of data out of samples or biopsies are allowing for previously unknown factors involved in disease to be discovered and utilized as drug targets or disease biomarkers. Data is also able to expose the complexity of a disease, especially cancer, and that there will never be one drug or treatment option that works for every patient


  1. Correlating multiple sources for diagnosis and therapy decisions


Big Data analysis of clinical outcomes, genetic profiles and tissue morphology will be a big driver of personalized medicine. As we are able to align and compare multiple data points from various sources, tailoring individualized treatment plans for each patient will be possible.


  1. Decisions based on hard facts, and less on subjective interpretation


Historically, much diagnosis has been based on subjective visual analysis of a biopsy sample viewed through a microscope. Depending on the clinician’s experience or background, the diagnosis could be different from clinician to clinician. Hence, the oft requested “second opinion.” The datafication of patient samples, where discrete data points are extracted from qualitative samples, yields a vast quantity of knowledge that can be statistically analyzed and quickly reviewed by multiple clinicians for solid diagnosis and therapy recommendations.


  1. Systematic analysis of tissue and genomic information


Through the datafication of patient tissue samples and genomic fingerprints, clinicians can systematically extract more information from each patient without requiring multiple rounds of testing. By having all available information at the same time while determining diagnosis and the patient prognosis, the best treatment decisions can be made on an individual basis at a faster rate.


  1. Reproducibility within and between clinicians


Reproducing testing results in the clinic is very important. Each clinician should be able to produce the same diagnosis from day to day and diagnoses should be the same between clinicians. By using Big Data generated from clinical samples and testing, consistently reproducible test results are possible between clinicians and doctors for more accurate diagnosis and appropriate spending on therapy options.



原文发布时间为:2014-09-03

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
存储 搜索推荐 算法
Java 大视界 -- Java 大数据在智能金融理财产品风险评估与个性化配置中的应用(195)
本文深入探讨了Java大数据技术在智能金融理财产品风险评估与个性化配置中的关键应用。通过高效的数据采集、存储与分析,Java大数据技术助力金融机构实现精准风险评估与个性化推荐,提升投资收益并降低风险。
Java 大视界 -- Java 大数据在智能金融理财产品风险评估与个性化配置中的应用(195)
|
2月前
|
分布式计算 搜索推荐 算法
Java 大视界 -- Java 大数据在智慧养老服务需求分析与个性化服务匹配中的应用(186)
本篇文章探讨了Java大数据技术在智慧养老服务需求分析与个性化服务匹配中的应用。通过整合老年人健康数据与行为数据,结合机器学习与推荐算法,实现对老年人健康风险的预测及个性化服务推荐,提升养老服务的智能化与精准化水平,助力智慧养老高质量发展。
|
2月前
|
机器学习/深度学习 分布式计算 搜索推荐
别让用户逛成“游客”:大数据如何打造零售的个性化购物体验
别让用户逛成“游客”:大数据如何打造零售的个性化购物体验
41 0
|
5月前
|
数据采集 搜索推荐 算法
大数据赋能零售,打造个性化购物新纪元
大数据赋能零售,打造个性化购物新纪元
90 12
|
机器学习/深度学习 搜索推荐 大数据
大数据在医疗健康领域的革新作用
【6月更文挑战第1天】大数据在医疗健康领域展现出巨大潜力,助力疾病预测、精准诊断和个性化治疗。通过分析医疗数据,预测风险、辅助诊断,并定制治疗方案。示例代码展示了使用LogisticRegression进行疾病预测。随着技术发展,大数据将为医疗健康带来革命性进步,保障人类健康。
242 1
|
10月前
|
机器学习/深度学习 搜索推荐 大数据
大数据与医疗健康:个性化治疗的未来
【10月更文挑战第31天】大数据正以前所未有的方式重塑医疗健康领域,推动个性化治疗从理论走向现实。本文探讨了大数据在医疗健康中的应用,特别是在推动个性化治疗发展方面的潜力与挑战,包括数据挖掘、电子健康记录、远程医疗等方面的技术创新,以及面临的数据安全和隐私保护等问题。未来,大数据将助力医疗健康领域更加智能和人性化。
|
12月前
|
存储 搜索推荐 大数据
大数据在医疗领域的应用
大数据在医疗领域有广泛应用,包括电子病历的数字化管理和共享,提升医疗服务效率与协同性;通过数据分析支持医疗决策,制定个性化治疗方案;预测疾病风险并提供预防措施;在精准医疗中深度分析患者基因组信息,实现高效治疗;在药物研发中,加速疗效和副作用发现,提高临床试验效率。此外,在金融领域,大数据的“4V”特性助力业务决策前瞻性,被广泛应用于银行、证券和保险的风险评估、市场分析及个性化服务中,提升运营效率和客户满意度。
1283 6
|
12月前
|
人工智能 编解码 搜索推荐
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
|
搜索推荐 安全 大数据
大数据在医疗领域的应用与前景
【6月更文挑战第26天】大数据在医疗领域提升服务效率,助力疾病预防与精准治疗。电子病历优化数据管理,疾病预测预防个性化医疗成为可能。未来,智能医疗系统普及,远程医疗兴起,数据共享促进行业发展,同时隐私保护与安全备受关注。大数据正重塑医疗,开启健康新篇章。
|
存储 关系型数据库 测试技术
印尼医疗龙头企业Halodoc的数据平台转型之Lakehouse架构
印尼医疗龙头企业Halodoc的数据平台转型之Lakehouse架构
171 4