成为大数据时代巨头的5个要素

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

编者按:Navin Chaddha是早期阶段风险投资公司Mayfield的总经理。这家公司目前正在投资的一些公司包括Gigya、Elastica、Lyft、MapR和Poshmark。


随着2014年下半年的到来,大数据俨然已经成为了一种社会主流,它影响了我们的休闲读物、多个产业的格局和面向消费者的应用等各方各面,同时也左右了大批资本的流向。风险投资行业在过去45年的时间内已经见证过许多技术周期——从PC时代的诞生,到主从式架构计算和基于网络计算的发展,还有云端和SaaS模式的崛起,我们对一家公司从创业阶段发展成行业巨头的模式已经形成了一种固有的认知。


根据我们的观察所得,成为一家基业长青的大数据公司需要具备以下的条件:


1. 从平台向生态系统的转换

要了解一个技术平台是否掌握主导地位,最清晰的方式就是看看这个平台的生态系统建立速度有多快。例如在SaaS时代,Salesforce能够快速成为业界领军的原因正是它拥有一个庞大的生态系统。大数据时代也是一样。


在大数据领域有一家叫做MapR的公司发展十分迅速,它就是一个从平台转换成生态系统的例子。作为一家Hadoop平台的服务商,它是唯一能够将开源(社区创新、便携性和灵活性)的优势体现在独特的平台架构升级的公司,为客户提供企业级的可靠性、安全性和性能。


MapR的生态系统不仅融合了新兴的Hadoop开源社区,而且在MapR App Gallery中迅速扩展合作伙伴的解决方案组合。企业客户可以在这个生态系统当中利用现成的大数据工具和应用轻易地部署和扩展大数据方案。


另外一个例子是MongoDB,这是一个业界领先的开源NoSQL数据库,被多家公司用于各种类型的应用当中。MongoDB正在为各行各业的合作伙伴建立一个大规模的生态系统。


2. 解决没有人愿意处理的棘手问题

这并非大数据世界当中最光彩的部分,然而我们相信这种类型的工作会造就许多大公司。在主从式计算的时代,数据整合先驱Informatica在解决复杂的数据整合难题的过程中逐步成为业界巨头,而且在Gartner Data Integration Magic Quadrant当中占据了连续八年领导地位


在这个领域值得留意的另外一家公司是Trifacta,它的平台可以帮助技术类和非技术类的分析师将原始数据转换成可执行的数据。


3. 在大数据时代彻底改造商业智能,在获取数据的同时提供分析结果

像Business Objects能够帮助行业管理人员获取数据分析的结果,于是它成为了主从式计算时代的行业巨头。我们认为一部分的大数据公司也正在成为像Platfora这样的公司,后者能够在本地部署Hadoop,实现快速获取实时可视化的分析结果。


4. 深入运用专业领域的知识

确保专业领域的宝贵知识能够运用到你的分析应用当中,这样你才能立于不败之地。SAP就是利用这个策略成为了软件行业的巨头。


我们从Palantir这样的大数据分析公司当中看到了这种宝贵的专业知识,这家公司专门为反诈骗和网络安全这些特殊领域提供由人力驱动和机器协助的解决方案,它服务的垂直行业包括国防、保险、医疗和执法等。将机器数据转化成分析结果的Splunk也能体现出这种特质。


5. 利用直观的界面取悦客户

为你的IT和行业客户提供赏心悦目的数据交互界面;理解用户与应用进行交互的方式,不断改进用户体验的细节,做出直观和美观的界面。例如Dropbox在实现了一种简单直观的文件共享方式之后就迅速成长为一家行业巨头,现在它在世界范围内已经拥有超过2亿用户。


能够提供直观界面的大数据公司还包括Tableau,这家公司通过生成可视化内容 查看和理解数据,并从中得出分析结果;还有Elasticsearch,这是一个能够提供快速丰富搜索体验的开源解决方案。


大数据时代的未来

我们还需要关注的另外一个领域是物联网,因为它将会以各种全新的方式提供数据,从而改变技术产业的格局。现在这些数据的来源可以是恒温器、手机和手表,甚至是水杯这样的物品……以后的数据将会来自我们从来没有想过的地方。关于数据的所有权、生命周期和提取的全部观念都要经过重新定义,届时将会催生出一大批新的公司。这将会掀起新一轮的创新大潮,公司会推出一些以前从来没有想象过的全新产品和服务,而现有的产品和服务将会改写。


原文发布时间为:2014-09-02

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
机器学习/深度学习 自然语言处理 Cloud Native
探索在云原生环境中构建的大数据驱动的智能应用程序的成功案例,并分析它们的关键要素。
大数据索引: Google使用大数据索引来构建其搜索引擎,并实时处理全球各种语言的文本数据。 云原生基础设施: Google Cloud提供了强大的云原生基础设施,支持大规模数据存储和处理。 自然语言处理: Google使用自然语言处理技术来理解和索引文本数据,从而提供高质量的搜索结果。 实时搜索: Google的
170 0
|
安全 大数据 数据安全/隐私保护
瓴羊Dataphin隐私计算:数据安全流通方案-大数据产业发展概览-数据要素市场的发展趋势
瓴羊Dataphin隐私计算:数据安全流通方案-大数据产业发展概览
125 0
|
数据采集 存储 监控
谈谈从DAMA、DCMM和DGI三大数据治理框架详细了解数据战略规划的关键要素
当前,数据作为新的生产要素提到了关键位置,众多组织认为数据是重要的战略资产。
谈谈从DAMA、DCMM和DGI三大数据治理框架详细了解数据战略规划的关键要素
|
分布式计算 大数据 Hadoop
从十大技术和十大巨头了解大数据
从十大技术和十大巨头了解大数据
128 0
从十大技术和十大巨头了解大数据
|
分布式计算 关系型数据库 大数据
|
分布式计算 NoSQL 大数据