行业趋势—游戏行业市场营销往精细化发展
2020年初突发的疫情防控导致游戏行业的用户数量大幅增长,个别产品的服务器更是被玩家挤爆,对应二级市场上游戏公司股价也开始一路走高。
然而回望两年前,受政策影响整个游戏行业受到重挫,2018年游戏娱乐板块全年整体下跌36.66%,游戏行业几乎一整年都在饥寒交迫中挣扎。直到2018年12月,游戏版号恢复审批,游戏行业才开始逐步复苏。再加上5G的推出,有望解决云游戏及AR/VR的技术瓶颈,游戏行业的发展迎来春天的趋势已经势不可挡。
而此次的疫情防控,对于游戏行业的发展,就好比发令枪已响。整个行业经历了整体下跌,再逐步复苏的过程,不少游戏公司都面临着推广成本高、获客难、流量成本高等问题,然而发令枪一响,有些游戏公司已经提前布局,提前进入了快车道。游戏用户越来越成熟,对于游戏品质的要求也越来越高。游戏领域的竞争愈演愈烈,游戏好玩的同时也需要做好市场运营才能获得更好的业绩。随着流量成本不断升高,游戏行业的市场营销开始往精细化发展。
企业A是一家独特且创新的游戏公司,目前在全球已有超过1亿的手机游戏用户。代表作手游曾成为一款国民级手游,同时在全球大获成功。近些年来,企业A继续深耕研发有足够创新度和游戏性的手机游戏,致力于发展游戏发行业务,为全球的玩家带来更具可玩性的游戏,为各大研发商提供向全世界发布游戏的优质平台,在中国手游发行商中位列前茅。
迅猛增长的数据量和分析需求对自建系统的扩展性、易用性、实时性都带来了挑战
游戏领域的竞争非常激烈,业务上要求游戏运营平台能够做到精细化运营,效果实时反馈,抢先一步预测。企业A的广告大数据分析部门为了解决实时分析问题,以Hadoop体系为生态核心来构建搭建了自己的大数据体系。但是随着数据量的迅猛增长以及业务对于数据分析的要求的提高,这套大数据分析系统的问题逐渐暴露出来:
- 扩展性问题
数据量增长曲线高,IDC扩容难度大。
- 易用性问题
自行维护的Hadoop+Hive+Presto体系,学习与维护成本过高。
- 实时性问题
业务越来越高的实时性要求,Presto作为直接查询的实时计算引擎,性能不达预期,数据分析的实时性不够,即便是预计算处理后放在高性能数据库里再输出也捉襟见肘。
- 性价比问题
为了确保性能与稳定,自建集群随着IDC规模的扩大,企业成本会大幅上升。
如何低成本的应对业务量增长带来的各类挑战
针对上述业务挑战和架构遇到的痛点,企业A大数据团队开始尝试针对架构和产品选型进行考察,先后尝试了多款开源分布式分析引擎以及大数据产品,但是在实时性,关联性查询等方面的业务要求无法满足。最终企业A大数据团队尝试POC使用了阿里云的AnalyticDB for MySQL产品。分析型数据库AnalyticDB是阿里巴巴自主研发的海量数据实时高并发在线分析云计算服务,可以在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索。在感受到 ADB的快、灵活、易用、规模扩展和高并发的优点特性后,企业A的大数据团队和阿里云数据库团队一起成功地打造了围绕阿里云AnalyticDB为核心的新一代游戏广告实时运营分析平台。
整个方案是将归因后的数据经过logstash后存入AnalyticDB存储密集型,再预处理后放入AnalyticDB计算密集型,供前端分析使用,用来替代原来的Hadoop+Hive+Presto体系。基于阿里云AnalyticDB的新实平台有很多优势:
- 查询速度快
比OLTP快10倍以上,比presto也能快数倍,QPS数百到上万。
- 弹性伸缩
节点和配置都可以随时升降,随着数据增长灵活升级。
- 易用
Pesto迁移过来,几乎没有任何改动成本,MySQL迁移大部分语句兼容。
- 海量规模
动态线性扩容至数千节点,可支撑海量级别数据及分析。
客户价值:10倍性能提升,75%成本节约
企业A通过采用“POLARDB + ADB大存储+ ADB高性能”产品组合打造出新一代游戏买量市场实时数据运营分析平台,云原生数据处理、分析闭环,实现了高效的游戏数据运营。
分析数据的实时性提升帮助用户更好地挖掘数据蕴含的价值,通过对数据的分析更好地指导业务开展。在构建好新一代平台后,分析性能产生了5-10倍的性能提升,极大的提升了业务体验,促进了买量市场的投放效率转化;
基于玩家行为日志表日益增长,日增长过亿数据量,通过ADB存储密集型实例进行存储和分析,有效地降低的客户的总体使用成本,总成本下降高达75%;
5-10倍的性能提升、300%成本节约、超高性价比助力新一代游戏发行实时数据运营迈上新台阶。