基于 RocketMQ Prometheus Exporter 打造定制化 DevOps 平台

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 基于 RocketMQ Prometheus Exporter 打造定制化 DevOps 平台

作者:陈厚道,冯庆


PC端登录 start.aliyun.com 即在浏览器中体验RocketMQ在线可交互教程



本文将对 RocketMQ-Exporter 的设计实现做一个简单的介绍,读者可以通过本文了解到 RocketMQ-Exporter 的实现过程,以及通过 RocketMQ-Exporter 来搭建自己的 RocketMQ 监控系统。该项目的 git 地址https://github.com/apache/rocketmq-exporter


文章主要内容包含以下几个方面:


  1. RocketMQ 介绍
  2. Prometheus 简介
  3. RocketMQ-Exporter 的具体实现
  4. RocketMQ-Exporter 的监控指标和告警指标
  5. RocketMQ-Exporter 使用示例


RocketMQ 介绍

RocketMQ 是一个分布式消息和流数据平台,具有低延迟、高性能、高可靠性、万亿级容量和灵活的可扩展性。简单的来说,它由 Broker 服务器和客户端两部分组成,其中客户端一个是消息发布者客户端(Producer),它负责向 Broker 服务器发送消息;另外一个是消息的消费者客户端(Consumer),多个消费者可以组成一个消费组,来订阅和拉取消费 Broker 服务器上存储的消息。正由于它具有高性能、高可靠性和高实时性的特点,与其他协议组件在 MQTT 等各种消息场景中的结合也越来越多,应用越来越广泛。而对于这样一个强大的消息中间件平台,在实际使用的时候还缺少一个监控管理平台。而当前在开源界,使用最广泛监控解决方案的就是 Prometheus。与其它传统监控系统相比较,Prometheus 具有易于管理,监控服务的内部运行状态,强大的数据模型,强大的查询语言 PromQL,高效的数据处理,可扩展,易于集成,可视化,开放性等优点。并且借助于 Prometheus 可以很快速的构建出一个能够监控 RocketMQ 的监控平台。


Prometheus 简介

下图展示了 Prometheus 的基本架构:



Prometheus Server

Prometheus Server 是 Prometheus 组件中的核心部分,负责实现对监控数据的获取,存储以及查询。 Prometheus Server 可以通过静态配置管理监控目标,也可以配合使用 Service Discovery 的方式动态管理监控目标,并从这些监控目标中获取数据。其次 Prometheus Server 需要对采集到的监控数据进行存储,Prometheus Server 本身就是一个时序数据库,将采集到的监控数据按照时间序列的方式存储在本地磁盘当中。最后 Prometheus Server 对外提供了自定义的 PromQL 语言,实现对数据的查询以及分析。


Exporters

Exporter 将监控数据采集的端点通过 HTTP 服务的形式暴露给 Prometheus Server,Prometheus Server 通过访问该 Exporter 提供的 Endpoint 端点,即可获取到需要采集的监控数据。RocketMQ-Exporter 就是这样一个 Exporter,它首先从 RocketMQ 集群采集数据,然后借助 Prometheus 提供的第三方客户端库将采集的数据规范化成符合 Prometheus 系统要求的数据,Prometheus 定时去从 Exporter 拉取数据即可。当前 RocketMQ Exporter 已被 Prometheus 官方收录,其地址为 https://github.com/apache/rocketmq-exporter



RocketMQ-Exporter 的具体实现

当前在 Exporter 当中,实现原理如下图所示:



整个系统基于 spring boot 框架来实现。由于 MQ 内部本身提供了比较全面的数据统计信息,所以对于 Exporter 而言,只需要将 MQ 集群提供的统计信息取出然后进行加工而已。所以 RocketMQ-Exporter 的基本逻辑是内部启动多个定时任务周期性的从 MQ 集群拉取数据,然后将数据规范化后通过端点暴露给 Prometheus 即可。其中主要包含如下主要的三个功能部分:


  • MQAdminExt 模块通过封装 MQ 系统客户端提供的接口来获取 MQ 集群内部的统计信息。
  • MetricService 负责将 MQ 集群返回的结果数据进行加工,使其符合 Prometheus 要求的格式化数据。
  • Collect 模块负责存储规范化后的数据,最后当 Prometheus 定时从 Exporter 拉取数据的时候,Exporter 就将 Collector 收集的数据通过 HTTP 的形式在/metrics 端点进行暴露。


RocketMQ-Exporter 的监控指标和告警指标

RocketMQ-Exporter 主要是配合 Prometheus 来做监控,下面来看看当前在 Expoter 中定义了哪些监控指标和告警指标


  • 监控指标


监控指标

含义

rocketmq_broker_tps

broker每秒生产消息数量

rocketmq_broker_qps

broker每秒消费消息数量

rocketmq_producer_tps

某个topic每秒生产的消息数量

rocketmq_producer_put_size

某个topic每秒生产的消息大小(字节)

rocketmq_producer_offset

某个topic的生产消息的进度

rocketmq_consumer_tps

某个消费组每秒消费的消息数量

rocketmq_consumer_get_size

某个消费组每秒消费的消息大小(字节)

rocketmq_consumer_offset

某个消费组的消费消息的进度

rocketmq_group_get_latency_by_storetime

某个消费组的消费延时时间

rocketmq_message_accumulation(rocketmq_producer_offset-rocketmq_consumer_offset)

消息堆积量(生产进度-消费进度)


rocketmq_message_accumulation 是一个聚合指标,需要根据其它上报指标聚合生成。


  • 告警指标


告警指标

含义

sum(rocketmq_producer_tps) by (cluster) >= 10

集群发送tps太高

sum(rocketmq_producer_tps) by (cluster) < 1

集群发送tps太低

sum(rocketmq_consumer_tps) by (cluster) >= 10

集群消费tps太高

sum(rocketmq_consumer_tps) by (cluster) < 1

集群消费tps太低

rocketmq_group_get_latency_by_storetime > 1000

集群消费延时告警

rocketmq_message_accumulation > value

消费堆积告警


消费者堆积告警指标也是一个聚合指标,它根据消费堆积的聚合指标生成,value 这个阈值对每个消费者是不固定的,当前是根据过去 5 分钟生产者生产的消息数量来定,用户也可以根据实际情况自行设定该阈值。 告警指标设置的值只是个阈值只是象征性的值,用户可根据在实际使用 RocketMQ 的情况下自行设定。这里重点介绍一下消费者堆积告警指标,在以往的监控系统中,由于没有像 Prometheus 那样有强大的 PromQL 语言,在处理消费者告警问题时势必需要为每个消费者设置告警,那这样就需要 RocketMQ 系统的维护人员为每个消费者添加,要么在系统后台检测到有新的消费者创建时自动添加。在 Prometheus 中,这可以通过一条如下的语句来实现:


(sum(rocketmq_producer_offset) by (topic) - on(topic)  group_right  sum(rocketmq_consumer_offset) by (group,topic))

- ignoring(group) group_left sum (avg_over_time(rocketmq_producer_tps[5m])) by (topic)*5*60 > 0


借助 PromQL 这一条语句不仅可以实现为任意一个消费者创建消费告警堆积告警,而且还可以使消费堆积的阈值取一个跟生产者发送速度相关的阈值。这样大大增加了消费堆积告警的准确性。


RocketMQ-Exporter 使用示例

1 启动 NameServer 和 Broker


要验证 RocketMQ 的 Spring-Boot 客户端,首先要确保 RocketMQ 服务正确的下载并启动。可以参考 RocketMQ 主站的快速开始来进行操作。确保启动 NameServer 和 Broker 已经正确启动。


2 编译 RocketMQ-Exporter


用户当前使用,需要自行下载 git 源码编译


git clone https://github.com/apache/rocketmq-exporter

cd rocketmq-exporter

mvn clean install


3 配置和运行


RocketMQ-Exporter 有如下的运行选项


选项

默认值

含义

rocketmq.config.namesrvAddr

127.0.0.1:9876

MQ集群的nameSrv地址

rocketmq.config.webTelemetryPath

/metrics

指标搜集路径

server.port

5557

HTTP服务暴露端口


以上的运行选项既可以在下载代码后在配置文件中更改,也可以通过命令行来设置。


编译出来的 jar 包就叫 rocketmq-exporter-0.0.1-SNAPSHOT.jar,可以通过如下的方式来运行。


java -jar rocketmq-exporter-0.0.1-SNAPSHOT.jar [--rocketmq.config.namesrvAddr="127.0.0.1:9876" ...]


4 安装 Prometheus


首先到 Prometheus 官方下载地址去下载 Prometheus 安装包,当前以 linux 系统安装为例,选择的安装包为 prometheus-2.7.0-rc.1.linux-amd64.tar.gz,经过如下的操作步骤就可以启动 prometheus 进程。


tar -xzf prometheus-2.7.0-rc.1.linux-amd64.tar.gzcd prometheus-2.7.0-rc.1.linux-amd64/./prometheus --config.file=prometheus.yml --web.listen-address=:5555


Prometheus 默认监听端口号为 9090,为了不与系统上的其它进程监听端口冲突,我们在启动参数里面重新设置了监听端口号为 5555。然后通过浏览器访问 http://<服务器 IP 地址>:5555,就可以验证 Prometheus 是否已成功安装,显示界面如下



由于 RocketMQ-Exporter 进程已启动,这个时候可以通过 Prometheus 来抓取 RocketMQ-Exporter 的数据,这个时候只需要更改 Prometheus 启动的配置文件即可


整体配置文件如下:


# my global config

global:

  scrape_interval:     15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.

  evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.

  # scrape_timeout is set to the global default (10s).

 

 

# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.

rule_files:

  # - "first_rules.yml"

  # - "second_rules.yml"

 


scrape_configs:

  - job_name: 'prometheus'

    static_configs:

    - targets: ['localhost:5555']

 

 

  - job_name: 'exporter'

    static_configs:

    - targets: ['localhost:5557']


更改配置文件后,重启服务即可。重启后就可以在 Prometheus 界面查询 RocketMQ-Exporter 上报的指标,例如查询 rocketmq_broker_tps 指标,其结果如下



5 告警规则添加


在 Prometheus 可以展示 RocketMQ-Exporter 的指标后,就可以在 Prometheus 中配置 RocketMQ 的告警指标了。在 Prometheus 的配置文件中添加如下的告警配置项,*.rules 表示可以匹配多个后缀为 rules 的文件。


rule_files:

 # - "first_rules.yml"

 # - "second_rules.yml"

 - /home/prometheus/prometheus-2.7.0-rc.1.linux-amd64/rules/*.rules


当前设置的告警配置文件为 warn.rules,其文件具体内容如下所示。其中的阈值只起一个示例的作用,具体的阈值还需用户根据实际使用情况来自行设定。


###

# Sample prometheus rules/alerts for rocketmq.

#

###

# Galera Alerts


groups:

- name: GaleraAlerts

 rules:

 - alert: RocketMQClusterProduceHigh

   expr: sum(rocketmq_producer_tps) by (cluster) >= 10

   for: 3m

   labels:

     severity: warning

   annotations:

     description: '{{$labels.cluster}} Sending tps too high.'

     summary: cluster send tps too high

 - alert: RocketMQClusterProduceLow

   expr: sum(rocketmq_producer_tps) by (cluster) < 1

   for: 3m

   labels:

     severity: warning

   annotations:

     description: '{{$labels.cluster}} Sending tps too low.'

     summary: cluster send tps too low

 - alert: RocketMQClusterConsumeHigh

   expr: sum(rocketmq_consumer_tps) by (cluster) >= 10

   for: 3m

   labels:

     severity: warning

   annotations:

     description: '{{$labels.cluster}} consuming tps too high.'

     summary: cluster consume tps too high

 - alert: RocketMQClusterConsumeLow

   expr: sum(rocketmq_consumer_tps) by (cluster) < 1

   for: 3m

   labels:

     severity: warning

   annotations:

     description: '{{$labels.cluster}} consuming tps too low.'

     summary: cluster consume tps too low

 - alert: ConsumerFallingBehind

   expr: (sum(rocketmq_producer_offset) by (topic) - on(topic)  group_right  sum(rocketmq_consumer_offset) by (group,topic)) - ignoring(group) group_left sum (avg_over_time(rocketmq_producer_tps[5m])) by (topic)*5*60 > 0

   for: 3m

   labels:

     severity: warning

   annotations:

     description: 'consumer {{$labels.group}} on {{$labels.topic}} lag behind

       and is falling behind (behind value {{$value}}).'

     summary: consumer lag behind

 - alert: GroupGetLatencyByStoretime

   expr: rocketmq_group_get_latency_by_storetime > 1000

   for: 3m

   labels:

     severity: warning

   annotations:

     description: 'consumer {{$labels.group}} on {{$labels.broker}}, {{$labels.topic}} consume time lag behind message store time

       and (behind value is {{$value}}).'

     summary: message consumes time lag behind message store time too much


最终,可以在 Prometheus 的看一下告警展示效果,红色表示当前处于告警状态的项,绿色表示正常状态。



6 Grafana dashboard for RocketMQ


Prometheus 自身的指标展示平台没有当前流行的展示平台 Grafana 好, 为了更好的展示 RocketMQ 的指标,可以使用 Grafana 来展示 Prometheus 获取的指标。首先到官网去下载https://grafana.com/grafana/download, 这里仍以二进制文件安装为例进行介绍。


wget https://dl.grafana.com/oss/release/grafana-6.2.5.linux-amd64.tar.gz 

tar -zxvf grafana-6.2.5.linux-amd64.tar.gz

cd grafana-5.4.3/


同样为了不与其它进程的使用端口冲突,可以修改 conf 目录下的 defaults.ini 文件的监听端口,当前将 grafana 的监听端口改为 55555,然后使用如下的命令启动即可


./bin/grafana-server web


然后通过浏览器访问 http://<服务器 IP 地址>:55555,就可以验证 grafana 是否已成功安装。系统默认用户名和密码为 admin/admin,第一次登陆系统会要求修改密码,修改密码后登陆,界面显示如下:



点击 Add data source 按钮,会要求选择数据源。



选择数据源为 Prometheus,设置数据源的地址为前面步骤启动的 Prometheus 的地址



回到主界面会要求创建新的 Dashboard



点击创建 dashboard,创建 dashboard 可以自己手动创建,也可以以配置文件导入的方式创建,当前已将 RocketMQ 的 dashboard 配置文件上传到 Grafana 的官网,这里以配置文件导入的方式进行创建。



点击 New dashboard 下拉按钮



选择 import dashboard



这个时候可以到 Grafana 官网去下载当前已为 RocketMQ 创建好的配置文件,地址为https://grafana.com/dashboards/10477/revisions,如下图所示



,点击 download 就可以下载配置文件,下载配置文件然后,复制配置文件中的内容粘贴到上图的粘贴内容处。


最后按上述方式就将配置文件导入到 Grafana 了。



最终的效果如下所示



作者介绍


陈厚道,曾就职于腾讯、盛大、斗鱼等互联网公司。目前就职于尚德机构,在尚德机构负责基础架构方面的设计和开发工作。对分布式消息队列、微服务架构和落地、DevOps 和监控平台有比较深入的研究。


冯庆,曾就职于华为。目前就职于尚德机构,在尚德机构基础架构团队负责基础组件的开发工作。

相关实践学习
通过可观测可视化Grafana版进行数据可视化展示与分析
使用可观测可视化Grafana版进行数据可视化展示与分析。
相关文章
|
7月前
|
消息中间件 安全 物联网
MQTT常见问题之新增自定义主题后平台侧收不到发布的数据如何解决
MQTT(Message Queuing Telemetry Transport)是一个轻量级的、基于发布/订阅模式的消息协议,广泛用于物联网(IoT)中设备间的通信。以下是MQTT使用过程中可能遇到的一些常见问题及其答案的汇总:
|
18天前
|
消息中间件 运维 安全
C5GAME 游戏饰品交易平台借助 RocketMQ Serverless 保障千万级玩家流畅体验
游戏行业蓬勃发展,作为国内领先的 STEAM 游戏饰品交易的服务平台,看 C5GAME 如何利用 RocketMQ Serverless 技术,为千万级玩家提供流畅的游戏体验,同时降低成本并提升运维效率。
C5GAME 游戏饰品交易平台借助 RocketMQ Serverless 保障千万级玩家流畅体验
|
5月前
|
消息中间件 Java 测试技术
消息队列 MQ使用问题之数据流出规则是否支持平台的云RabbitMQ
消息队列(MQ)是一种用于异步通信和解耦的应用程序间消息传递的服务,广泛应用于分布式系统中。针对不同的MQ产品,如阿里云的RocketMQ、RabbitMQ等,它们在实现上述场景时可能会有不同的特性和优势,比如RocketMQ强调高吞吐量、低延迟和高可用性,适合大规模分布式系统;而RabbitMQ则以其灵活的路由规则和丰富的协议支持受到青睐。下面是一些常见的消息队列MQ产品的使用场景合集,这些场景涵盖了多种行业和业务需求。
|
1月前
|
Prometheus 监控 Cloud Native
Prometheus中的Exporter详解
【10月更文挑战第25天】Prometheus Exporter分为直接采集(如cAdvisor, Kubernetes)和间接采集(如Node Exporter)两类。
|
6月前
|
安全 API 持续交付
阿里云云效产品使用问题之如何从流水线访问内网平台的HTTP接口
云效作为一款全面覆盖研发全生命周期管理的云端效能平台,致力于帮助企业实现高效协同、敏捷研发和持续交付。本合集收集整理了用户在使用云效过程中遇到的常见问题,问题涉及项目创建与管理、需求规划与迭代、代码托管与版本控制、自动化测试、持续集成与发布等方面。
EMQ
|
5月前
|
物联网 Linux C语言
在 Windows 平台搭建 MQTT 服务
NanoMQ 有着强大的跨平台和可兼容能力,不仅可以用于以 Linux 为基础的各类平台,也为 Windows 平台提供了 MQTT 服务的新选择。
EMQ
124 7
在 Windows 平台搭建 MQTT 服务
|
5月前
|
弹性计算 应用服务中间件 Serverless
云上应用管理问题之EDAS 对于Container + Serverless Container的场景该如何解决
云上应用管理问题之EDAS 对于Container + Serverless Container的场景该如何解决
|
6月前
|
弹性计算 数据可视化 安全
高效部署企业门户网站【阿里云云效平台详细指南】
使用阿里云云效部署企业网站涉及备案域名、ECS、VPC、云效代码仓库和流水线。一键部署通过ROS快速配置,手动部署则需详细配置流水线,包括代码源、构建、部署到ECS。整个流程约10分钟,但需注意网络问题可能导致的异常。一键部署适合快速启动,手动部署适合定制化。文档详细,但可增加常见问题解答和自动化脚本支持。
4910 3
高效部署企业门户网站【阿里云云效平台详细指南】
|
7月前
|
运维 安全 Cloud Native
解读平台工程,DevOps真的死了吗?不,它只是换了个马甲而已,依然是DevOps的延续
最近平台工程这个概念越来越火爆,Gartner 的预测,到 2026 年,80% 的软件工程组织将拥有平台工程团队,来提供内部服务、组件和应用程序交付工具,作为可重复使用的资源。本篇文章将带你走进平台工程,了解它的起源和解决的问题。
204 0
|
7月前
|
消息中间件 存储 Cloud Native
【深入浅出RocketMQ原理及实战】「底层原理挖掘系列」打造新一代云原生"消息、事件、流"统一消息引擎的融合处理平台
【深入浅出RocketMQ原理及实战】「底层原理挖掘系列」打造新一代云原生"消息、事件、流"统一消息引擎的融合处理平台
98 0