函数计算助力语雀构建稳定且安全的业务架构

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
性能测试 PTS,5000VUM额度
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: 语雀是一个专业的云端知识库,用于团队的文档协作。现在已是阿里员工进行文档编写和知识沉淀的标配,并于 2018 年开始对外提供服务。

客户介绍

语雀是一个专业的云端知识库,用于团队的文档协作。现在已是阿里员工进行文档编写和知识沉淀的标配,并于 2018 年开始对外提供服务。

客户痛点

语雀是一个复杂的 Web 应用,也是一个典型的数据密集型应用(Data-Intensive Application),背后依赖了大量的数据库等云服务。语雀服务端是 Node.js 技术栈。当提到 Node 的时候,可能立刻就会有几个词浮现在我们脑海之中:单线程(single-threaded)、非阻塞(non-blocking)、异步(asynchronously programming),这些特性一方面非常的适合于构建可扩展的网络应用,用来实现 Web 服务这类 I/O 密集型的应用,另一方面它也是大家一直对 Node 诟病的地方,对 CPU 密集型的场景不够友好,一旦有任何阻塞进程的方法被执行,整个进程就被阻塞。

像语雀这样用 Node 实现整个服务端逻辑的应用,很难保证不会出现一些场景可能会消耗大量 CPU 甚至是死循环阻塞进程的,以 markdown 转换举例,由于用户的输入无法穷举,总有各种可能让转换代码进入到一个低效甚至是死循环的场景之中。在 Node 刚出世的年代,很难给这些问题找到完美的解决办法,而即便是 Java 等基于线程并发模型的语言,在遇到这样的场景也很头痛,毕竟 CPU 对于 Web 应用来说都是非常重要的资源。而随着基础设置越来越完善,当函数计算出现时,Node 最大的短板看起来有了一个比较完美的解决方案。

解决方案

“把函数计算引入之后,我们可以将那些 CPU 密集型、存在不稳定因素的操作统统放到函数计算服务中去执行,而我们的主服务再次回归到了 I/O 密集型应用模型,又可以愉快的享受 Node 给我们带来的高效研发福利了!”语雀产品技术负责人不四表示。

“以语雀中遇到的一个实际场景来举例,用户传入了一些 HTML 或者 Markdown 格式的文档内容,我们需要将其转换成为语雀自己的文档格式。在绝大部分情况下,解析用户输入的内容都很快,然而依然存在某些无法预料到的场景会触发解析器的 bug 而导致死循环的出现,甚至我们不太敢升级 Markdown 解析库和相关插件以免引入更多的问题。但是随着函数计算的引入,我们将这个消耗 CPU 的转换逻辑放到函数计算上,语雀的主服务稳定性不会再被影响。”
yq1.png

除了帮助 Web 系统分担一些 CPU 密集型操作以外,函数计算还能做什么呢?

语雀支持使用各种代码形式来绘图,包括 Plantuml、公式、Mermaid,还有一些将文档导出成 PDF、图片等功能。这些场景有两个特点:
1、他们依赖于一些复杂的应用软件,例如 Puppeteer、Graphviz 等;
2、可能需要执行用户输入的内容;

支持这类场景看似简单,通过 process.exec 子进程调用一下就搞定了。但是当我们想把它做成一个稳定的对外服务时,问题就出现了。这些复杂的应用软件可能从设计上并没有考虑要长期运行,长期运行时的内存占用、稳定性可能会有一些问题,同时在被大并发调用时,对 CPU 的压力非常大。再加上有些场景需要运行用户输入的代码,攻击者通过构建恶意输入,可以在服务器上运行攻击代码,非常危险。

在没有引入函数计算之前,语雀为了支持这些功能,尽管单独分配了一个任务集群,在上面运行这些三方服务,接受主服务的请求来避免影响主服务的稳定性。但是为了解决上面提到的一系列问题还需要付出很大的成本:
1、需要维持一个不小的任务集群,尽管可能大部分时间都用不上那么多资源。
2、需要定时对三方应用软件进行重启,避免长时间运行带来的内存泄露,即便如此有些特殊请求也会造成第三方软件的不稳定。
3、对用户的输入进行检测和过滤,防止黑客恶意攻击,而黑客的攻击代码很难完全防住,安全风险依旧很大。
yq2.png

最后语雀将所有的第三方服务都分别打包在函数中,将这个任务集群上的功能都拆分成了一系列的函数放到了函数计算上。通过函数计算的特点一下解决了上面的所有问题:
1、函数计算的计费模式是按照代码实际运行的 CPU 时间计费,不需要长期维护一个任务集群了。
2、函数计算上的函数运行时尽管会有一些常驻函数的优化,但是基本不用考虑长期运行带来的一系列问题,且每次调用之间都相互独立,不会互相影响。
3、用户的输入代码是运行在一个沙箱容器中,即便不对用户输入做任何过滤,恶意攻击者也拿不到任何敏感信息,同时也无法进入内部网络执行代码,更加安全。
yq3.png

除了上面提到的这些功能之外,语雀最近还使用 OSS + 函数计算替换了之前使用的阿里云视频点播服务来进行视频和音频的转码。

由于浏览器可以直接支持播放的音视频格式并不多,大量用户上传的视频想要能够直接在语雀上进行播放需要对它们进行转码,业界一般都是通过 FFmpeg 来对音视频进行转码的。转码服务也是一个典型的 CPU 密集型场景,如果要自己搭建视频转码集群会面临大量的资源浪费,而使用阿里云视频点播服务,成本也比较高,而且能够控制的东西也不够多。函数计算直接集成了 FFmpeg 提供音视频处理能力,并集成到应用中心,配合 SLS 完善了监控和数据分析。语雀将音视频处理从视频点播服务迁移到函数计算之后,通过优化压缩率、减少不必要的转码等优化,将费用降低至之前的 1/5。
yq4.png

使用效果

语雀产品技术负责人不四表示:从语雀的实践来看,语雀并没有像 SFF 一样将 Web 服务迁移到函数计算之上(SFF 模式并不是现在的函数计算架构所擅长的),但是函数计算在语雀整体的架构中对稳定性、安全性和成本控制起到了非常重要的作用。总结下来函数计算非常适合下面几种场景:

1、对于时效性要求不算非常高的 CPU 密集型操作,分担主服务 CPU 压力。
2、当做沙箱环境执行用户提交的代码。
3、运行不稳定的三方应用软件服务。
4、需要很强动态伸缩能力的服务。

在引入函数计算之后,语雀现阶段的架构变成了以一个 Monolith Application 为核心,并将一些独立的功能模块根据使用场景和对能力的要求分别拆分成了 Microservices 和 Serverless 架构。应用架构与团队成员组成、业务形态息息相关,但是随着各种云服务与基础设施的完善,我们可以更自如的选择更合适的架构。

由于 Serverless 的出现,我们可以将这些存在安全风险的,消耗大量 CPU 计算的任务都迁移到函数计算上。它运行在沙箱环境中,不用担心用户的恶意代码造成安全风险,同时将这些 CPU 密集型的任务从主服务中剥离,避免出现并发时阻塞主服务。按需付费的方式也可以大大节约成本,不需要为低频功能场景部署一个常驻服务。所以我们会尽量的把这类服务都迁移到 Serverless 上。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
19天前
|
运维 Kubernetes Docker
利用Docker和Kubernetes构建微服务架构
利用Docker和Kubernetes构建微服务架构
|
25天前
|
运维 持续交付 API
从零构建微服务架构:一次深度技术探索之旅####
【10月更文挑战第28天】 本文记录了作者在从零开始构建微服务架构过程中的深刻技术感悟,通过实战案例详细剖析了微服务设计、开发、部署及运维中的关键要点与挑战。文章首先概述了微服务架构的核心理念及其对企业IT架构转型的重要性,随后深入探讨了服务拆分策略、API网关选型、服务间通信协议选择、容器化部署(Docker+Kubernetes)、以及持续集成/持续部署(CI/CD)流程的设计与优化。最后,分享了在高并发场景下的性能调优经验与故障排查心得,旨在为读者提供一套可借鉴的微服务架构实施路径。 ####
57 3
|
2天前
|
负载均衡 Java 开发者
深入探索Spring Cloud与Spring Boot:构建微服务架构的实践经验
深入探索Spring Cloud与Spring Boot:构建微服务架构的实践经验
25 5
|
15天前
|
传感器 算法 物联网
智能停车解决方案之停车场室内导航系统(二):核心技术与系统架构构建
随着城市化进程的加速,停车难问题日益凸显。本文深入剖析智能停车系统的关键技术,包括停车场电子地图编辑绘制、物联网与传感器技术、大数据与云计算的应用、定位技术及车辆导航路径规划,为读者提供全面的技术解决方案。系统架构分为应用层、业务层、数据层和运行环境,涵盖停车场室内导航、车位占用检测、动态更新、精准导航和路径规划等方面。
66 4
|
13天前
|
Kubernetes API Docker
构建高效后端服务:微服务架构的深度实践与优化####
本文深入探讨了微服务架构在现代后端开发中的应用,通过剖析其核心概念、设计原则及实施策略,结合具体案例分析,展示了如何有效提升系统的可扩展性、可靠性和维护性。文章还详细阐述了微服务拆分的方法论、服务间通信的最佳实践、以及容器化与编排工具(如Docker和Kubernetes)的应用技巧,为读者提供了一份全面的微服务架构落地指南。 ####
|
24天前
|
监控 前端开发 JavaScript
探索微前端架构:构建可扩展的现代Web应用
【10月更文挑战第29天】本文探讨了微前端架构的核心概念、优势及实施策略,通过将大型前端应用拆分为多个独立的微应用,提高开发效率、增强可维护性,并支持灵活的技术选型。实际案例包括Spotify和Zalando的成功应用。
|
10天前
|
监控 测试技术 持续交付
深入理解微服务架构:构建高效、可扩展的系统
深入理解微服务架构:构建高效、可扩展的系统
29 0
|
3月前
|
人工智能 自然语言处理 Serverless
阿里云函数计算 x NVIDIA 加速企业 AI 应用落地
阿里云函数计算与 NVIDIA TensorRT/TensorRT-LLM 展开合作,通过结合阿里云的无缝计算体验和 NVIDIA 的高性能推理库,开发者能够以更低的成本、更高的效率完成复杂的 AI 任务,加速技术落地和应用创新。
158 13
|
4月前
|
Serverless API 异构计算
函数计算产品使用问题之修改SD模版应用的运行环境
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
4月前
|
运维 Serverless 网络安全
函数计算产品使用问题之通过仓库导入应用时无法配置域名外网访问,该如何排查
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。