/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.examples;
//导入必要的package
import java.io.IOException; //报错类
import java.util.StringTokenizer; //StringTokenizer类,用于将空白字符作为分割符的类
import org.apache.hadoop.conf.Configuration;//Hadoop中用于读取配置信息的类
import org.apache.hadoop.fs.Path; //有关文件系统输入输出数据的类
import org.apache.hadoop.io.IntWritable; //封装定义了IntWritable类
import org.apache.hadoop.io.Text; //封装定义了Text类
import org.apache.hadoop.mapreduce.Job; //封装定义了Job类
import org.apache.hadoop.mapreduce.Mapper; //封装定义了Mapper类
import org.apache.hadoop.mapreduce.Reducer; //封装定义了Reducer类
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; //文件输入要用到的类
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; //文件输出要用到的类
import org.apache.hadoop.util.GenericOptionsParser; //GenericOptionsParser类,用来解释常用hadoop命令,并根据需要为Configuration对象设置相应的值
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{ //自定义的TokenizerMapper类,继承自前面导入的Mapper类
private final static IntWritable one = new IntWritable(1); //实例化了一个IntWritable类的one对象并赋值为常量1
private Text word = new Text(); //实例化了一个Text类的对象word
public void map(Object key, Text value, Context context //定义Map方法
) throws IOException, InterruptedException {
//这里说一下context类,它是Mapper的一个内部类,它用来与MapReduce系统进行通信,如把map的结果传给reduce处理。简单的说顶级接口用它在map或是reduce任务中跟踪task的状态,MapContext就是记录了map执行的上下文,在mapper类中,这个context可以存储一些job conf的信息,同时context作为了map和reduce执行中各个函数的一个桥梁,我们可以在map函数中处理这个信息
StringTokenizer itr = new StringTokenizer(value.toString());//实例化了一个以空白字符为分隔符的StringTokenizer类的对象itr
while (itr.hasMoreTokens()) {//如果判断还有下一个分隔符(空格)
word.set(itr.nextToken()); //则输出并返回之间的字符串给word
context.write(word, one); //context.write方法将(word,1)这样的二元组存入context中
}
}
}
public static class IntSumReducer //自定义的IntSumReducer类,继承自前面导入的Reducer类
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable(); //实例化了一个IntWritable类的result对象
public void reduce(Text key, Iterable<IntWritable> values,Context context//定义Reduce方法,这里迭代器(Iterator)是一种设计模式,它是一个对象,它可以遍历并选择序列(IntWritable)中的对象,而开发人员不需要了解该序列的底层结构。
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();//将该词的出现次数相加
}
result.set(sum);//将sum赋给result
context.write(key, result);//输出最终结果
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
//运行MapReduce程序前都要初始化Configuration,该类主要是读取MapReduce系统配置信息,这些信息包括hdfs还有MapReduce,也就是安装hadoop时候的配置文件例如:core-site.xml、hdfs-site.xml和mapred-site.xml等等文件里的信息,有些童鞋不理解为啥要这么做,这个是没有深入思考MapReduce计算框架造成,我们程序员开发MapReduce时候只是在填空,在map函数和reduce函数里编写实际进行的业务逻辑,其它的工作都是交给MapReduce框架自己操作的,但是至少我们要告诉它怎么操作啊,比如hdfs在哪里,MapReduce的jobstracker在哪里,而这些信息就在conf包下的配置文件里。
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}//If的语句好理解,就是运行WordCount程序时候一定是两个参数,如果不是就会报错退出。至于第一句里的GenericOptionsParser类,它是用来解释常用hadoop命令,并根据需要为Configuration对象设置相应的值
Job job = Job.getInstance(conf, "word count");//用Job.getInstance方法设置作业名为word count
job.setJarByClass(WordCount.class); //为job的输出数据设置Key类
job.setMapperClass(TokenizerMapper.class); //设置Mapper类(Map阶段使用)
job.setCombinerClass(IntSumReducer.class); //设置Combiner类(中间合并结果)
job.setReducerClass(IntSumReducer.class); //设置Reducer类(Reduce阶段使用)
job.setOutputKeyClass(Text.class); //为job的输出数据设置Key类,规定Reduce输出的Key类型为Text
job.setOutputValueClass(IntWritable.class); //设置Reduce输出的Value类型为IntWritable
for (int i = 0; i < otherArgs.length - 1; ++i) { //设置输入输出路径
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);//等待任务执行完毕退出
}
}