AI体验馆上线!集成业界领先NLP场景深度迁移学习框架EasyTransfer

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 2020年10月,阿里云正式开源了深度迁移学习框架EasyTransfer,这是业界首个面向NLP场景的深度迁移学习框架。目前集合该能力的AI体验馆已正式上线,免费体验:https://workbench.data.aliyun.com/experience.htm#/paiAbilityVenue/

2020年10月,阿里云正式开源了深度迁移学习框架EasyTransfer,这是业界首个面向NLP场景的深度迁移学习框架。开源链接:https://github.com/alibaba/EasyTransfer
目前集合该能力的AI体验馆已正式上线,免费体验:https://workbench.data.aliyun.com/experience.htm#/paiAbilityVenue/

image.png

用户可以轻松点击,免费体验包括NLP(文章分类、内容审核)、图像分类、语音识别、视频分类、视频精彩集锦自动生成等能力!
今天就带大家走进AI体验馆背后,揭开NLP领先技术的神秘面纱。

EasyTransfer框架由阿里云机器学习PAI团队研发,让自然语言处理场景的模型预训练和迁移学习开发与部署更加简单和高效。
面向自然语言处理场景的深度迁移学习在现实场景里有巨大的需求,因为大量新的领域不断涌现,传统的机器学习需要对每个领域都积累大量训练数据,这将会耗费大量标注的人力与物力。深度迁移学习技术可以将源领域学到的知识迁移到新的领域的任务,进而大大减少标注的资源。

尽管面向自然语言场景的深度迁移学习有很多的需求,目前开源社区还没有一个完善的框架,而且构建一个简单易用且高性能的框架有巨大挑战。

首先,预训练模型加知识迁移现在是主流的NLP应用模式,通常预训练模型尺寸越大学习到的知识表征越有效,然而超大的模型给框架的分布式架构带来了巨大挑战。如何提供一个高性能的分布式架构,从而有效支持超大规模的模型训练。

其次,用户应用场景的多样性很高,单一的迁移学习算法无法适用,如何提供一个完备的迁移学习工具来提升下游场景的效果。

第三,从算法开发到业务落地通常需要很长的链路,如何提供一个简单易用的从模型训练到部署的一站式服务。
面对这三大挑战,PAI团队推出了EasyTransfer,一个简单易用且高性能的迁移学习框架。框架支持主流的迁移学习算法,支持自动混合精度、编译优化和高效的分布式数据/模型并行策略,适用于工业级的分布式应用场景。

值得一提的是,配合混合精度、编译优化和分布式策略,EasyTransfer支持的ALBERT模型比社区版的ALBERT在分布式训练的运算速度上快4倍多。

同时,经过了阿里内部10多个BU,20多个业务场景打磨,给NLP和迁移学习用户提供了多种便利,包括业界领先的高性能预训练工具链和预训练ModelZoo,丰富易用的AppZoo,高效的迁移学习算法,以及全面兼容阿里巴巴PAI生态产品,给用户提供一个从模型训练到部署的一站式服务。

阿里云机器学习PAI团队负责人林伟表示:本次开源EasyTransfer代码,希望把阿里能力赋能给更多的用户,降低NLP的预训练和知识迁移的门槛,同时也和更多伙伴一起深入合作打造一个简单,易用,高性能的NLP和迁移学习工具。

image.png

EasyTransfer工具的框架总览
EasyTransfer的整体框架如下图所示,在设计上尽可能的简化了深度迁移学习的算法开发难度。框架抽象了常用的IO,layers,losses,optimizers, models,用户可以基于这些接口开发模型,也可以直接接入预训练模型库ModelZoo快速建模。框架支持五种迁移学习(TL)范式,model finetuning,feature-based TL, instance-based TL, model-based TL和meta learning。同时,框架集成了AppZoo,支持主流的NLP应用,方便用户搭建常用的NLP算法应用。最后,框架无缝兼容PAI生态的产品,给用户从训练到部署带来一站式的体验。

image.png

业界领先的高性能预训练工具链和预训练ModelZoo
EasyTransfer框架支持工业级的分布式应用场景,改善了分布式优化器,配合自动混合精度,编译优化,和高效的分布式数据/模型并行策略,做到比社区版的多机多卡分布式训练在运算速度上快4倍多。基于这个高性能的分布式底座,框架推出完整的预训练工具链,方便用户预训练语言模型如BERT和ALBERT。值得一提的是,基于该预训练工具产出的模型在多个公开的榜单上取得好成绩,比方说多轮对话榜单QuAC第一名(2019年10月),中文CLUE榜单取得第一名(2019年12月),和英文SuperGLUE榜单第二名。同时EasyTransfer集成了预训练模型ModelZoo,支持BERT,ALBERT,XLNet等主流模型的Continual Pretrain和Finetune,也集成了在PAI平台上训练的高质量预训练模型和自研的电商场景多模态模型FashionBERT。

丰富易用的AppZoo & 知识蒸馏
EasyTransfer封装了高度易用、灵活且学习成本低的AppZoo,支持用户在仅用几行命令的条件下“大规模”运行“前沿”的开源与自研算法,即可迅速接入不同场景和业务数据下的NLP应用,包括文本向量化、匹配、分类、阅读理解和序列标注等。并且集成了丰富知识蒸馏算法,使得用户能从参数量大、推理速度慢的大模型中蒸馏出参数少、推理性能高的可上线的小模型。比方说,EasyTransfer集成了任务自适应蒸馏模型AdaBERT,从神经架构搜索(NAS)这个全新的角度出发,搜索出最适合目标任务的小模型架构,在6个NLP经典任务上,将BERT模型压缩到原来的1/17~1/10,推理加速达到原先的12 ~ 29倍。同时该模型相应论文已被AI顶级会议 IJCAI 2020 所接收。

高效的迁移学习算法
EasyTransfer框架支持所有主流的迁移学习范式,包括Model Fine-tuning, Feature-based TL, Instance-based TL, Model-based TL和Meta Learning。基于这些迁移学习范式开发了10多种算法,在阿里的业务实践中取得了良好效果的效果。后续所有的算法都会开源到EasyTransfer代码库里。在具体应用的时候,用户可以根据下图来选择一种迁移学习范式来测试效果。

image.png

集成适应多任务的自研元学习算法
EasyTransfer框架集成了基于元学习(Meta Learning)的多任务学习算法,支持用户在训练特定任务的模型时利用其他任务的数据集进行学习增强。EasyTransfer集成了自研的元调优(Meta Fine-tuning)算法,借鉴元学习的思想,旨在学习预训练语言模型跨领域的Meta-leaner,从而使得学习的Meta-leaner可以快速迁移到特定领域的任务上。该算法相应论文已被NLP顶级会议 EMNLP 2020 所接收。由于上述模型仍然具有参数量太大、推理速度慢的问题,EasyTransfer团队进一步自研了元知识蒸馏算法,在蒸馏阶段额外对Meta-leaner进行选择性蒸馏,使得蒸馏得到的小模型在相应的领域的效果显著提升,逼近原始模型的效果。相关的代码和论文会在近期发布。

全面兼容阿里巴巴PAI生态产品
EasyTransfer框架全面兼容PAI-Tensorflow,用户通过简单的代码或配置文件修改,就可以使用PAI自研高效的分布式训练,编译优化等特性;同时框架完美兼容PAI生态的产品,在PAI Web组件(PAI Studio),开发平台(PAI DSW),云原生训练平台(PAI DLC),和PAI Serving平台(PAI EAS)上均可直接使用。
应用落地和创新的算法解决方案。

EasyTransfer框架已在阿里集团内数十个NLP场景落地,包括智能客服、搜索推荐、安全风控、大文娱等,带来了显著业务效果的提升。目前EasyTransfer日常服务有上亿次调用,月均训练调用量超过5万次。EasyTransfer团队在落地业务的同时也沉淀了很多的创新的算法解决方案,包括元学习,多模态预训练,强化迁移学习,特征迁移学习等方向的工作,共合作发表了几十篇顶级会议文章,下面列举一些代表性工作。这些算法一部分已经开源,其他部分会在EasyTransfer框架里陆续开源供广大用户使用。

[EMNLP 2020]. Meta Fine-Tuning Neural Language Models for Multi-Domain Text Mining. 2020.
[SIGIR2020] FashionBERT: Text and Image Matching for Fashion Domain with Adaptive Loss. 2020.
[IJCAI 2020] AdaBERT: Task-Adaptive BERT Compression with Differentiable Neural Architecture Search. 2020.
[KDD 2019]. A Minimax Game for Instance based Selective Transfer Learning. 2019.
[CIKM 2019]. Cross-domain Attention Network with Wasserstein Regularizers for E-commerce Search, 2019.
[WWW 2019]. Multi-Domain Gated CNN for Review Helpfulness Prediction, 2019.
[WSDM 2019]. Learning to Selectively Transfer: Reinforced Transfer Learning for Deep Text Matching. 2019.
[WSDM 2018]. Modeling Domain Relationships for Transfer Learning on Retrieval-based Question Answering Systems in E-commerce. 2018.
[ACL 2018]. Transfer Learning for Context-Aware Question Matching in Information-seeking Conversations in E-commerce. 2018.
[ICDM 2017]. A Short-Term Rainfall Prediction Model using Multi-Task Convolutional Neural Networks. 2017.

作者:岑鸣/葡萄

相关文章
|
25天前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
43 3
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
DiffSensei:AI 漫画生成框架,能生成内容可控的黑白漫画面板,支持多角色和布局控制
DiffSensei 是一个由北京大学、上海AI实验室及南洋理工大学共同推出的AI漫画生成框架,能够生成可控的黑白漫画面板。该框架整合了基于扩散的图像生成器和多模态大型语言模型(MLLM),支持多角色控制和精确布局控制,适用于漫画创作、个性化内容生成等多个领域。
68 18
DiffSensei:AI 漫画生成框架,能生成内容可控的黑白漫画面板,支持多角色和布局控制
|
4天前
|
机器学习/深度学习 人工智能
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
Leffa 是 Meta 开源的图像生成框架,通过引入流场学习在注意力机制中精确控制人物的外观和姿势。该框架不增加额外参数和推理成本,适用于多种扩散模型,展现了良好的模型无关性和泛化能力。
38 11
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
|
9天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
93 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
10天前
|
人工智能 安全 PyTorch
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
SPDL是Meta AI推出的开源高性能AI模型数据加载解决方案,基于多线程技术和异步事件循环,提供高吞吐量、低资源占用的数据加载功能,支持分布式系统和主流AI框架PyTorch。
44 10
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
|
10天前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
73 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
12天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
54 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
15天前
|
机器学习/深度学习 人工智能 算法
【AI系统】AI 框架基础介绍
本文介绍了AI算法、神经网络及其应用,解释了为何神经网络需要训练及AI框架的作用。通过解析深度学习的数学原理与反向求导算法,阐述了AI框架如何作为模型设计、训练和验证的标准工具,支持算法封装、数据调用及计算资源管理,强调了AI框架的发展历程和技术迭代。
47 9
【AI系统】AI 框架基础介绍
|
14天前
|
机器学习/深度学习 人工智能 算法
【AI系统】框架编程范式
编程范式是软件工程中一类典型的编程风格,如函数式、命令式、声明式、面向对象等。它们影响着开发者对程序执行的理解。本文探讨了两种主要的编程范式——声明式编程与命令式编程,特别是在AI框架中的应用,如TensorFlow的声明式编程和PyTorch的命令式编程,分析了这两种范式对AI框架架构设计的影响及主流AI框架在这两种范式上的差异。
45 3
【AI系统】框架编程范式
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
【AI系统】AI 框架作用
深度学习通过多层计算模型学习数据中的复杂结构,实现高级别的数据抽象。例如,CNN能从大量图像中学习猫和狗的特征。本文探讨深度学习原理及其计算中AI框架的应用,强调AI框架如何帮助自动求导,简化模型训练过程,以及在实际应用中的作用。
43 3
【AI系统】AI 框架作用
下一篇
DataWorks