知乎李大海对话阿里云贾扬清:透视AI应用难题与未来趋势

简介: “AI行业接下来可能有哪些发展?” “一线从业者如何看待其中的机会?”知乎合伙人、CTO李大海与阿里巴巴副总裁、阿里云智能高级研究员贾扬清亮相知乎直播,与网友分享了他们对AI时代下行业趋势、技术应用、个人成长等多个层面的洞察和思考。

自AlphaGo接连战胜李世石与柯洁后,越来越多从业者将AI看做科技行业的未来。大大小小的AI公司兴起,国内外巨头公司纷纷加速向AI转型。但经历祛魅后的AI,在过去几年间却并未获得观察者们预想的火箭式爆发。

“AI行业接下来可能有哪些发展?” “一线从业者如何看待其中的机会?”知乎合伙人、CTO李大海与阿里巴巴副总裁、阿里云智能高级研究员贾扬清亮相知乎直播,与网友分享了他们对AI时代下行业趋势、技术应用、个人成长等多个层面的洞察和思考。

谈海内外异同,国内关注技术落地,海外试错造就新机会
AI浪潮席卷全球,但国内外发展则各有所长。贾扬清在入职阿里巴巴前,曾在Facebook担任研究主任,领导研究团队为所有Facebook的应用程序构建大型通用AI平台。李大海则于2006~2010年在Google任职高级工程师。两位嘉宾均在国内外科技公司任职多年,这一经历也造就了两人宽阔的横向视野。
image.png

正因如此,在面对主持人开场提出的“在AI研发和应用方面,国内科技企业和硅谷公司有哪些差别?”这一问题时,贾扬清、李大海观点一致:国内科技公司和硅谷同行们的相近之处在于从业者都很用功,对前沿技术突破都有追求。差异点在于,国内公司较关注把方法和业务结合起来,更为看重技术落地;而硅谷公司为员工纯粹的技术好奇心提供了更大试错空间,“不经意洒下的种子”往往创造出意想不到的产业机会。

谈发展趋势, 从AI感知到AI决策的螺旋前进
AI相关话题持续火热,仅在知乎上,“人工智能”话题就有超过150万人关注。
但对于“AI行业目前发展到哪一阶段,是否看好”,吃瓜群众们一直众说纷纭,甚至就连一线从业者也有不同观点。有人认为目前行业概念先行,充满泡沫。也有人认为AI已有长足进步,未来3-5年发展可期。
image.png

对于这一话题,李大海表示,如果要判断AI的发展阶段,那么首先需要了解发展的全景是什么,而现在还很难预测人工智能最终能发展到什么程度。对人工智能是否能达到“强人工智能”(即完全通过图灵测试,有意识、能进行情感层面的表达)他本人也持悲观态度。但他更看好AI作为生产工具的应用空间,“大家所认为的泡沫其实是AI企业在探索商业模式过程中困境,但AI作为生产工具越来越强大,这是毋庸置疑的”。

贾扬清认为,AI发展最开始试图绕过“感知”层面直接解决“决策”层面的问题,但事实上这条路走不通。随后,AI行业开始专攻“感知”领域,发展到现在已经较为成熟,比如,AI的图像识别能力已经远超人类;眼下,如何解决“决策”层面的问题,再次成为攻克的方向。“比如说,自动驾驶领域已经进化到可感知到周围的人与车,但难点则在于,怎么在不同条件下做出决策,规避感知到的障碍,这些问题更有挑战性”。

谈个人成长,上手能力很重要,AI人才正在“业务化
AI作为最有前景的高科技行业,也创造了大量就业岗位,并且吸引了众多程序员“转型”。在直播中,AI行业的职业成长问题也成为网友关注焦点。

对于网友“工程AI与算法AI哪个更有从业前景?”的提问,李大海表示,随着技术迭代,未来AI的从业能力门槛会越来越低,相比“选A或者选B”这样的算法积累,工程师的基础能力和学习能力更加重要。工程师需要具备 “T字形思维”,一横代表处于平均水平线之上的动手能力,一竖则代表快速学习能力,能根据业务需求进行针对性的技能提升,才是工程师的立身和进阶之本。

贾扬清则借此提出一个大胆的观点。他认为行业不存在算法工程师的角色。换言之,未来行业只有两个角色,一个是算法研究人员,一个是应用工程师。而只会做简单适配的“调参侠”是没有市场的。

针对“AI工程师如何进阶,如何能够脱颖而出”的问题,贾扬清表示,当下的算法已经像工具一样普惠化,AI在算法层面的创新正在变缓。因此实现AI的突破,需要算法、系统、应用并行。如何找到实际应用场景,往往最能体现个人价值。

李大海则认为,在实际工作过程中AI是一个系统工程,“往往工程师90%的工作都跟算法无关”。当下,业界较为成功的人或者团队都在“业务化”,相比单纯钻研算法,更重要的是了解用户需求,并解决实际问题。

两位大咖在知乎的这场直播对话吸引了众多科技圈及AI圈从业者的关注,也引发知乎用户在站内的二次讨论。事实上,在知乎直播平台,活跃着大量各领域专业人士与多元话题,从毕志飞与王瑞恩的直播辩论,到张亮与许先哲的文化对谈,他们在文字分享之外,通过直播形式讲述见解,分享真知,直播也成为了知乎专业内容生产与消费的重要场景。

image.png

点击查看大咖对话视频

来源 | IT168
作者 | 姜惠田
相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
2月前
|
人工智能 文字识别 监控
|
2月前
|
云安全 人工智能 安全
Dify平台集成阿里云AI安全护栏,构建AI Runtime安全防线
阿里云 AI 安全护栏加入Dify平台,打造可信赖的 AI
2759 166
|
2月前
|
人工智能 vr&ar UED
获奖公布|第十九届"挑战杯"竞赛2025年度中国青年科技创新"揭榜挂帅"擂台赛阿里云“AI技术助力乡村振兴”专题赛拟授奖名单公示
获奖公布|第十九届"挑战杯"竞赛2025年度中国青年科技创新"揭榜挂帅"擂台赛阿里云“AI技术助力乡村振兴”专题赛拟授奖名单公示
|
2月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
466 30
|
2月前
|
机器学习/深度学习 人工智能 Serverless
吉利汽车携手阿里云函数计算,打造新一代 AI 座舱推理引擎
当前吉利汽车研究院人工智能团队承担了吉利汽车座舱 AI 智能化的方案建设,在和阿里云的合作中,基于星睿智算中心 2.0 的 23.5EFLOPS 强大算力,构建 AI 混合云架构,面向百万级用户的实时推理计算引入阿里云函数计算的 Serverless GPU 算力集群,共同为智能座舱的交互和娱乐功能提供大模型推理业务服务,涵盖的场景如针对模糊指令的复杂意图解析、文生图、情感 TTS 等。
|
2月前
|
设计模式 人工智能 自然语言处理
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
410 1
|
2月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
514 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
2月前
|
机器学习/深度学习 人工智能 算法
阿里云视频云以 360° 实时回放技术支撑 NBA 2025 中国赛 —— AI 开启“智能观赛”新体验
NBA中国与阿里云达成合作,首发360°实时回放技术,融合AI视觉引擎,实现多视角、低延时、沉浸式观赛新体验,重新定义体育赛事观看方式。
469 0
阿里云视频云以 360° 实时回放技术支撑 NBA 2025 中国赛 —— AI 开启“智能观赛”新体验
|
2月前
|
存储 人工智能 OLAP
AI Agent越用越笨?阿里云AnalyticDB「AI上下文工程」一招破解!
AI上下文工程是优化大模型交互的系统化框架,通过管理指令、记忆、知识库等上下文要素,解决信息缺失、长度溢出与上下文失效等问题。依托AnalyticDB等技术,实现上下文的采集、存储、组装与调度,提升AI Agent的准确性与协同效率,助力企业构建高效、稳定的智能应用。