Serverless 架构到底要不要服务器?

本文涉及的产品
函数计算FC,每月15万CU 3个月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: Serverless 架构是不是就不要服务器了?回答这个问题,我们需要了解下 Serverless 是什么。

1.13头图.jpg

作者 | aoho
来源 | Serverless 公众号

Serverless 是什么?

Serverless 架构是不是就不要服务器了?回答这个问题,我们需要了解下 Serverless 是什么。

Serverless 架构近几年频繁出现在一些技术架构大会的演讲标题中,很多人对于 Serverless,只是从字面意义上理解——无服务器架构,但是它真正的含义是开发者再也不用过多考虑服务器的问题,当然,这并不代表完全去除服务器,而是我们依靠第三方资源服务器后端,从 2014 年开始,经过这么多年的发展,各大云服务商基本都提供了 Serverless 服务。比如使用 Amazon Web Services(AWS) Lambda 计算服务来执行代码。

1.png

国内 Serverless 服务的发展相对 AWS 要晚一点,目前也都有对 Serverless 的支持。比较著名的云服务商有阿里云、腾讯云。它们提供的服务也大同小异:函数计算、对象存储、API 网关等,非常容易上手。

架构是如何演进到 Serverless ?

看看过去几十年间,云计算领域的发展演进历程。总的来说,云计算的发展分为三个阶段:虚拟化的出现、虚拟化在云计算中的应用以及容器化的出现。云计算的高速发展,则集中在近十几年。

2.png

总结来说有如下的里程碑事件:

  • 通过虚拟化技术将大型物理机虚拟成单个的 VM 资源。
  • 将虚拟化集群搬到云计算平台上,只做简单运维。
  • 把每一个 VM 按照运行空间最小化的原则切分成更细的 Docker 容器。
  • 基于 Docker 容器构建不用管理任何运行环境、仅需编写核心代码的 Serverless 架构。

从裸金属机器的部署应用,到 Openstack 架构和虚拟机的划分,再到容器化部署,这其中典型的就是近些年 Docker 和 Kubernetes 的流行,进一步发展为使用一个微服务或微功能来响应一个客户端的请求 ,这种方式是云计算发展的自然过程。

这个发展历程也是一场 IT 架构的演进,期间经历了一系列代际的技术变革,把资源切分得更细,让运行效率更高,让硬件软件维护更简单。IT 架构的演进主要有以下几个特点:

  • 硬件资源使用颗粒度变小
  • 资源利用率越来越高
  • 运维工作逐步减少
  • 业务更聚焦在代码层面

1. Serverless 架构的组成

Serverless架构分为 Backend as a Service(BaaS) 和 Functions as a Service(FaaS) 两种技术,Serverless 是由开发者实现的服务端逻辑运行在无状态的计算容器中,它是由事件触发、完全被第三方管理的。

2. 什么是 BaaS?

Baas 的英文翻译成中文的含义:后端即服务,它的应用架构由大量第三方云服务器和 API 组成,使应用中关于服务器的逻辑和状态都由服务提供方来管理。比如我们的典型的单页应用 SPA 和移动 APP 富客户端应用,前后端交互主要是以 RestAPI 调用为主。只需要调用服务提供方的 API 即可完成相应的功能,比如常见的身份验证、云端数据/文件存储、消息推送、应用数据分析等。

3. 什么是 FaaS?

FaaS 可以被叫做:函数即服务。开发者可以直接将服务业务逻辑代码部署,运行在第三方提供的无状态计算容器中,开发者只需要编写业务代码即可,无需关注服务器,并且代码的执行是由事件触发的。其中 AWS Lambda 是目前最佳的 FaaS 实现之一。

Serverless 的应用架构是将 BaaS 和 FaaS 组合在一起的应用,用户只需要关注应用的业务逻辑代码,编写函数为粒度将其运行在 FaaS 平台上,并且和 BaaS 第三方服务整合在一起,最后就搭建了一个完整的系统。整个系统过程中完全无需关注服务器。

Serverless 架构的特点

总得来说,Serverless 架构主要有以下特点:

  • 实现了细粒度的计算资源分配
  • 不需要预先分配资源
  • 具备真正意义上的高度扩容和弹性
  • 按需使用,按需计费

由于 Serverless 应用与服务器的解耦,购买的是云服务商的资源,使得 Serverless 架构降低了运维的压力,也无需进行服务器硬件等预估和购买。

Serverless 架构使得开发人员更加专注于业务服务的实现,中间件和硬件服务器资源都托管给了云服务商。这同时降低了开发成本,按需扩展和计费,无需考虑基础设施。

Serverless 架构给前端也带来了便利,大前端深入到业务端的成本降低,开发者只需要关注业务逻辑,前端工程师轻松转为全栈工程师。

Serverless 有哪些应用场景?

应用场景与 Serverless 架构的特点密切相关,根据 Serverless 的这些通用特点,我们归纳出下面几种典型使用场景:弹性伸缩、大数据分析、事件触发等。

1. 弹性伸缩

由于云函数事件驱动及单事件处理的特性,云函数通过自动的伸缩来支持业务的高并发。针对业务的实际事件或请求数,云函数自动弹性合适的处理实例来承载实际业务量。在没有事件或请求时,无运行实例,不占用资源。如视频直播服务,直播观众不固定,需要考虑适度的并发和弹性。直播不可能 24 小时在线,有较为明显的业务访问高峰期和低谷期。直播是事件或者公众点爆的场景,更新速度较快,版本迭代较快,需要快速完成对新热点的技术升级。

3.png

2. 大数据分析

数据统计本身只需要很少的计算量,离线计算生成图表。在空闲的时候对数据进行处理,或者不需要考虑任何延时的情况下。

4.png

  • 开发者编写代码,目前支持的语言 Java、NodeJS、Python 等语言;

  • 把代码上传到函数计算上,上传的方式有通过 API 或者 SDK 上传,也可以通过控制台页面上传,还可以通过命令行工具 Fcli 上传;

  • 通过 API&SDK 来触发函数计算执行,同样也可以通过云产品的事件源来触发函数计算执行;

  • 函数计算在执行过程中,会根据用户请请求量动态扩容函数计算来保证请求峰值的执行,这个过程对用户是透明无感知的;

  • 函数执行结束。

3. 事件触发

事件触发即云函数由事件驱动,事件的定义可以是指定的 http 请求,或者数据库的 binlog 日志、消息推送等。通过 Serverless 架构,在控制台上配置事件源通知,编写业务代码。业务逻辑添加到到函数计算里,业务高峰期函数计算会动态伸缩,这个过程不需要管理软硬件环境。常见的场景如视频、OSS 图片,当上传之后,通过进行后续的过滤、转换和分析,触发一系列的后续处理,如内容不合法、容量告警等。

小结

回到我们文章的开头,Serverless 架构不是不要服务器了,而是依托第三方云服务平台,服务端逻辑运行在无状态的计算容器中,其业务层面的状态则被开发者使用的数据库和存储资源所记录。

Serverless 无服务器架构有其适合应用的场景,但是也存在局限性。总得来说,Serverless 架构还不够成熟,很多地方尚不完善。Serverless 依赖云服务商提供的基础设施,目前来说云服务商还做不到真正的平台高可用。Serverless 资源虽然便宜,但是构建一个生产环境的应用系统却比较复杂。

云计算还在不断发展,基础设施服务日趋完善,开发者将会更加专注于业务逻辑的实现。云计算将平台、中间件、运维部署的责任进行了转移,同时也降低了中小企业上云的成本。让我们一起期待 Serverless 架构的未来。

参考:

  1. 阿里云文档
  2. https://blog.csdn.net/cc18868876837/article/details/90672971
相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
5天前
|
弹性计算 负载均衡 Java
【上云基础系列 02-01】通过SLB+1台ECS+ESS弹性伸缩,搭建一个精简版的上云标准弹性架构(含方案及教程)
通常,构建一个弹性架构(即使是一个最基础的入门版),至少需要2台ECS。但是,很多小微企业刚开始上云的时候,为了节省成本不愿意购买更多的服务器。通过 “ALB+ESS弹性伸缩+1台ECS+RDS”方案,在保障低成本的同时,也不牺牲业务架构的弹性设计,更避免了很多人因为节省成本选择了单体架构后频繁改造架构的困局。 方案中的几个设计非常值得小微企业借鉴:(1)通过ALB/RDS的按量付费,节省了初期流量不大时的费用;(2)通过ESS弹性伸缩,不需要提前购买服务器资源,但是当业务增长或减少时却保持了资源弹性自动扩缩容。
|
5天前
|
存储 人工智能 并行计算
2025年阿里云弹性裸金属服务器架构解析与资源配置方案
🚀 核心特性与技术创新:提供100%物理机性能输出,支持NVIDIA A100/V100 GPU直通,无虚拟化层损耗。网络与存储优化,400万PPS吞吐量,ESSD云盘IOPS达100万,RDMA延迟<5μs。全球部署覆盖华北、华东、华南及海外节点,支持跨地域负载均衡。典型应用场景包括AI训练、科学计算等,支持分布式训练和并行计算框架。弹性裸金属服务器+OSS存储+高速网络综合部署,满足高性能计算需求。
|
1月前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器ECS架构区别及选择参考:X86计算、ARM计算等架构介绍
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别,本文主要简单介绍下这些架构各自的主要性能及适用场景,以便大家了解不同类型的架构有何不同,主要特点及适用场景有哪些。
141 10
|
1月前
|
存储 人工智能 运维
面向AI的服务器计算软硬件架构实践和创新
阿里云在新一代通用计算服务器设计中,针对处理器核心数迅速增长(2024年超100核)、超多核心带来的业务和硬件挑战、网络IO与CPU性能增速不匹配、服务器物理机型复杂等问题,推出了磐久F系列通用计算服务器。该系列服务器采用单路设计减少爆炸半径,优化散热支持600瓦TDP,并实现CIPU节点比例灵活配比及部件模块化可插拔设计,提升运维效率和客户响应速度。此外,还介绍了面向AI的服务器架构挑战与软硬件结合创新,包括内存墙问题、板级工程能力挑战以及AI Infra 2.0服务器的开放架构特点。最后,探讨了大模型高效推理中的显存优化和量化压缩技术,旨在降低部署成本并提高系统效率。
|
2月前
|
弹性计算 运维 Serverless
卓越效能,极简运维,体验Serverless高可用架构,完成任务可领取转轮日历!
卓越效能,极简运维,体验Serverless高可用架构,完成任务可领取转轮日历!
|
3月前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
151 7
|
2月前
|
弹性计算 Cloud Native Serverless
阿里云 SAE 邀您参加 Serverless 高可用架构挑战赛,赢取精美礼品
阿里云 SAE 邀您参加 Serverless 高可用架构挑战赛,赢取精美礼品。
|
1月前
|
人工智能 运维 物联网
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。
|
6天前
|
机器学习/深度学习 分布式计算 大数据
阿里云 EMR Serverless Spark 在微财机器学习场景下的应用
面对机器学习场景下的训练瓶颈,微财选择基于阿里云 EMR Serverless Spark 建立数据平台。通过 EMR Serverless Spark,微财突破了单机训练使用的数据规模瓶颈,大幅提升了训练效率,解决了存算分离架构下 Shuffle 稳定性和性能困扰,为智能风控等业务提供了强有力的技术支撑。
|
1月前
|
存储 人工智能 Serverless
7分钟玩转 AI 应用,函数计算一键部署 AI 生图大模型
人工智能生成图像(AI 生图)的领域中,Stable Diffusion WebUI 以其强大的算法和稳定的输出质量而闻名。它能够快速地从文本描述中生成高质量的图像,为用户提供了一个直观且高效的创作平台。而 ComfyUI 则以其用户友好的界面和高度定制化的选项所受到欢迎。ComfyUI 的灵活性和直观性使得即使是没有技术背景的用户也能轻松上手。本次技术解决方案通过函数计算一键部署热门 AI 生图大模型,凭借其按量付费、卓越弹性、快速交付能力的特点,完美实现低成本,免运维。

相关产品

  • 函数计算