网络爬虫之网页排重:语义指纹

简介: 网络爬虫让我们高效地从网页获取到信息,但网页的重复率很高,网页需要按内容做文档排重,而判断文档的内容重复有很多种方法,语义指纹是其中比较高效的方法。本文选自《网络爬虫全解析——技术、原理与实践》。

引言:网络爬虫让我们高效地从网页获取到信息,但网页的重复率很高,网页需要按内容做文档排重,而判断文档的内容重复有很多种方法,语义指纹是其中比较高效的方法。
本文选自《网络爬虫全解析——技术、原理与实践》。

  现代社会,有效信息对人来说就像氧气一样不可或缺。互联网让有效信息的收集工作变得更容易。当你在网上冲浪时,网络爬虫也在网络中穿梭,自动收集互联网上有用的信息。
  自动收集和筛选信息的网络爬虫让有效信息的流动性增强,让我们更加高效地获取信息。随着越来越多的信息显现于网络,网络爬虫也越来越有用。
  不同的网站间转载内容的情况很常见。即使在同一个网站,有时候不同的URL地址可能对应同一个页面,或者存在同样的内容以多种方式显示出来,所以,网页需要按内容做文档排重。
  例如,一个企业商品搜索。搜商品名,有一家公司发的商品名字都一样,结果这家公司发的商品都显示在前面,但是要求一家企业只显示一条相似的商品在前面,可以把近似重复的文档权重降低,只保留一个文档不降低权重。
  判断文档的内容重复有很多种方法,语义指纹的方法比较高效。语义指纹是直接提取一个文档的二进制数组表示的语义,通过比较相等来判断网页是否重复。语义指纹是一个很大的数组,全部存放在内存会导致内存溢出,普通的数据库效率太低,所以采用内存数据库Berkeley DB。可以通过Berkeley DB判断该语义指纹是否已经存在。另外一种方法是通过布隆过滤器来判断语义指纹是否重复。
  提取网页语义指纹的方法是:从净化后的网页中,选取最有代表性的一组关键词,并使用该关键词组生成一个语义指纹。通过比较两个网页的语义指纹是否相同来判断两个网页是否相似。
  网络上一度出现过很多篇关于“罗玉凤征婚”的新闻报道,其中的两篇新闻内容对比如下表。
  【图1】

  对于这两篇内容相同的新闻,有可能提取出同样的关键词:“罗玉凤”“征婚”“北大”“清华”“硕士”,这就表示这两篇文档的语义指纹也相同。
  为了提高语义指纹的准确性,需要考虑到同义词,例如,“北京华联”和“华联商厦”可以看成相同意义的词。最简单的判断方法是做同义词替换。把“开业之初,比这还要多的质疑的声音环绕在北京华联决策者的周围”替换为“开业之初,比这还要多的质疑的声音环绕在华联商厦决策者的周围”。
  设计同义词词典的格式是:每行一个义项,前面是基本词,后面是一个或多个被替换的同义词,请看下面的例子。

华联商厦 北京华联 华联超市

  这样可以把“北京华联”或“华联超市”替换成“华联商厦”。对指定文本,要从前往后查找同义词词库中每个要替换的词,然后实施替换。同义词替换的实现代码分为两步。首先是查找Trie树结构的词典过程。

public void checkPrefix(String sentence,int offset,PrefixRet ret) {
  if (sentence == null || root == null || "".equals(sentence)) {
    ret.value = Prefix.MisMatch;
    ret.data = null;
    ret.next = offset;
    return ;
  }
  ret.value = Prefix.MisMatch;//初始返回值设为没匹配上任何要替换的词
  TSTNode currentNode = root;
  int charIndex = offset;
  while (true) {
    if (currentNode == null) {
          return;
    }
    int charComp = sentence.charAt(charIndex) - currentNode.splitchar;    if (charComp == 0) {
      charIndex++;
      if(currentNode.data != null){
        ret.data = currentNode.data;//候选最长匹配词
        ret.value = Prefix.Match;
        ret.next = charIndex;
      }
      if (charIndex == sentence.length()) {
        return; //已经匹配完
      }
      currentNode = currentNode.eqKID;
    } else if (charComp < 0) {
      currentNode = currentNode.loKID;
    } else {
      currentNode = currentNode.hiKID;
    }
  }
}

  然后是同义词替换过程。

//输入待替换的文本,返回替换后的文本
public static String replace(String content) throws Exception{
  int len = content.length();
  StringBuilder ret = new StringBuilder(len);
  SynonymDic.PrefixRet matchRet = new SynonymDic.PrefixRet(null,null);    
  
  for(int i=0;i<len;){
    //检查是否存在从当前位置开始的同义词
    synonymDic.checkPrefix(content,i,matchRet);
    if(matchRet.value == SynonymDic.Prefix.Match) //如果匹配上,则替换同义词
    {
      ret.append(matchRet.data);//把替换词输出到结果
      i=matchRet.next;//下一个匹配位置
    }
    else //如果没有匹配上,则从下一个字符开始匹配
    {
      ret.append(content.charAt(i));
      ++i;
    }
  }      return ret.toString();
}

  语义指纹生成算法如下所示。

  • 第1步:将每个网页分词表示成基于词的特征项,使用TF*IDF作为每个特征项的权值。地名、专有名词等,名词性的词汇往往有更高的语义权重。
  • 第2步:将特征项按照词权值排序。
  • 第3步:选取前n个特征项,然后重新按照字符排序。如果不排序,关键词就找不到对应关系。
  • 第4步:调用MD5算法,将每个特征项串转化为一个128位的串,作为该网页的指纹。

调用fseg.result.FingerPrint中的方法。

String fingerPrint = getFingerPrint("","昨日,省城渊明北路一名17岁的少年在6楼晾毛巾时失足坠楼,摔在楼下的一辆面包车上。面包车受冲击变形时吸收了巨大的反作用力能量,从而“救”了少年一命。目前,伤者尚无生命危险。据一位目击者介绍,事故发生在下午2时40分许,当时这名在某美发店工作的少年正站在阳台上晾毛巾,因雨天阳台湿滑而不小心摔下。 记者来到抢救伤者的医院了解到,这名少年名叫李嘉诚,今年17岁,系丰城市人。李嘉诚受伤后,他表姐已赶到医院陪护。据医生介绍,伤者主要伤在头部,具体伤情还有待进一步检查。");
String md5Value = showBytes(getMD5(fingerPrint));
System.out.println("FingerPrint:"+fingerPrint+" md5:"+md5Value);

  MD5可以将字符串转化成几乎无冲突的hash值,但是MD5速度比较慢,MurmurHash或者JenkinsHash也可以生成冲突很少的hash值,在Lucene的企业搜索软件Solr1.4版本中提供了JenkinsHash实现的语义指纹,叫作Lookup3Signature。调用MurmurHash生成64位的Hash值的代码如下所示。

public static long stringHash64(String str, int initial) {
  byte[] bytes = str.getBytes();
  return MurmurHash.hash64(bytes, initial);
}

  本文选自《网络爬虫全解析——技术、原理与实践》,点此链接可在博文视点官网查看此书。
                    图片描述
  想及时获得更多精彩文章,可在微信中搜索“博文视点”或者扫描下方二维码并关注。
                       图片描述

此外,本周正在进行一项热门活动——《尽在双11》阿里专家问答!
《尽在双11》的作者乐田、仁重正通过开源问答来答复读者有关《尽在双11》这本书的疑问~
更多好问题,期待你来问!

相关文章
|
5月前
|
数据采集 存储 API
网络爬虫与数据采集:使用Python自动化获取网页数据
【4月更文挑战第12天】本文介绍了Python网络爬虫的基础知识,包括网络爬虫概念(请求网页、解析、存储数据和处理异常)和Python常用的爬虫库requests(发送HTTP请求)与BeautifulSoup(解析HTML)。通过基本流程示例展示了如何导入库、发送请求、解析网页、提取数据、存储数据及处理异常。还提到了Python爬虫的实际应用,如获取新闻数据和商品信息。
904 2
|
5月前
|
数据采集 数据挖掘 Python
使用Python构建简单的Web爬虫:实现网页内容抓取与分析
本文将介绍如何使用Python编写一个简单的Web爬虫,实现对特定网页内容的抓取与分析。通过学习本文,读者将了解到如何利用Python的requests和Beautiful Soup库来获取网页内容,并通过示例演示如何解析HTML结构,提取所需信息。此外,我们还将讨论一些常见的爬虫挑战以及如何避免被网站封禁的策略。
|
16天前
|
缓存 网络协议 CDN
在网页请求到显示的过程中,如何优化网络通信速度?
在网页请求到显示的过程中,如何优化网络通信速度?
177 59
|
20天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
45 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
5月前
|
数据采集 前端开发 JavaScript
Objective-C爬虫:实现动态网页内容的抓取
Objective-C爬虫:实现动态网页内容的抓取
|
1月前
|
数据采集 JavaScript 前端开发
构建简易Python爬虫:抓取网页数据入门指南
【8月更文挑战第31天】在数字信息的时代,数据抓取成为获取网络资源的重要手段。本文将引导你通过Python编写一个简单的网页爬虫,从零基础到实现数据抓取的全过程。我们将一起探索如何利用Python的requests库进行网络请求,使用BeautifulSoup库解析HTML文档,并最终提取出有价值的数据。无论你是编程新手还是有一定基础的开发者,这篇文章都将为你打开数据抓取的大门。
|
2月前
|
数据采集 数据挖掘 数据处理
Python爬虫开发:爬取简单的网页数据
本文详细介绍了如何使用Python爬取简单的网页数据,以掘金为例,展示了从发送HTTP请求、解析HTML文档到提取和保存数据的完整过程。通过这个示例,你可以掌握基本的网页爬取技巧,为后续的数据分析打下基础。希望本文对你有所帮助。
|
2月前
|
数据采集 数据挖掘 数据处理
Python爬虫开发:爬取简单的网页数据
在数据分析中,数据的获取是第一步。随着互联网的普及,网络爬虫成为获取数据的重要手段。本文将详细介绍如何使用Python爬取简单的网页数据。
|
2月前
|
Web App开发 数据采集 C#
Python怎么使用爬虫获取网页内容
本文详细介绍了网页的基本概念及其构成,包括HTML文件的结构与作用,并演示了如何手动下载网页及使用Python编程语言实现网页内容的自动化下载。
|
2月前
|
数据采集 JavaScript 前端开发
构建你的第一个Python爬虫:抓取网页数据入门指南
【8月更文挑战第31天】在数字时代,数据是新的石油。本文将引导初学者通过简单的步骤,使用Python编程语言创建一个基础的网络爬虫程序。我们将探索如何从网络上提取信息,并理解背后的原理。无论你是编程新手还是想要扩展你的技术工具箱,这篇文章都将为你提供一条清晰的道路,让你学会编写能够自动获取网络数据的脚本。准备好开始你的网络数据抓取之旅了吗?让我们现在就开始吧!