OkHttp 3.7源码分析(四)——缓存策略

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 合理地利用本地缓存可以有效地减少网络开销,减少响应延迟。HTTP报头也定义了很多与缓存有关的域来控制缓存。今天就来讲讲OkHttp中关于缓存部分的实现细节。

OkHttp3.7源码分析文章列表如下:


合理地利用本地缓存可以有效地减少网络开销,减少响应延迟。HTTP报头也定义了很多与缓存有关的域来控制缓存。今天就来讲讲OkHttp中关于缓存部分的实现细节。

1. HTTP缓存策略

首先来了解下HTTP协议中缓存部分的相关域。

1.1 Expires

超时时间,一般用在服务器的response报头中用于告知客户端对应资源的过期时间。当客户端需要再次请求相同资源时先比较其过期时间,如果尚未超过过期时间则直接返回缓存结果,如果已经超过则重新请求。

1.2 Cache-Control

相对值,单位时秒,表示当前资源的有效期。Cache-ControlExpires优先级更高:

Cache-Control:max-age=31536000,public

1.3 条件GET请求

1.3.1 Last-Modified-Date

客户端第一次请求时,服务器返回:

Last-Modified: Tue, 12 Jan 2016 09:31:27 GMT

当客户端二次请求时,可以头部加上如下header:

If-Modified-Since: Tue, 12 Jan 2016 09:31:27 GMT

如果当前资源没有被二次修改,服务器返回304告知客户端直接复用本地缓存。

1.3.2 ETag

ETag是对资源文件的一种摘要,可以通过ETag值来判断文件是否有修改。当客户端第一次请求某资源时,服务器返回:

ETag: "5694c7ef-24dc"

客户端再次请求时,可在头部加上如下域:

If-None-Match: "5694c7ef-24dc"

如果文件并未改变,则服务器返回304告知客户端可以复用本地缓存。

1.4 no-cache/no-store

不使用缓存

1.5 only-if-cached

只使用缓存

2. Cache源码分析

OkHttp的缓存工作都是在CacheInterceptor中完成的,Cache部分有如下几个关键类:

  • Cache:Cache管理器,其内部包含一个DiskLruCache将cache写入文件系统:
 * <h3>Cache Optimization</h3>
 *
 * <p>To measure cache effectiveness, this class tracks three statistics:
 * <ul>
 *     <li><strong>{@linkplain #requestCount() Request Count:}</strong> the number of HTTP
 *         requests issued since this cache was created.
 *     <li><strong>{@linkplain #networkCount() Network Count:}</strong> the number of those
 *         requests that required network use.
 *     <li><strong>{@linkplain #hitCount() Hit Count:}</strong> the number of those requests
 *         whose responses were served by the cache.
 * </ul>
 *
 * Sometimes a request will result in a conditional cache hit. If the cache contains a stale copy of
 * the response, the client will issue a conditional {@code GET}. The server will then send either
 * the updated response if it has changed, or a short 'not modified' response if the client's copy
 * is still valid. Such responses increment both the network count and hit count.
 *
 * <p>The best way to improve the cache hit rate is by configuring the web server to return
 * cacheable responses. Although this client honors all <a
 * href="http://tools.ietf.org/html/rfc7234">HTTP/1.1 (RFC 7234)</a> cache headers, it doesn't cache
 * partial responses.

Cache内部通过requestCount,networkCount,hitCount三个统计指标来优化缓存效率

  • CacheStrategy:缓存策略。其内部维护一个request和response,通过指定request和response来描述是通过网络还是缓存获取response,抑或二者同时使用
[CacheStrategy.java]
/**
* Given a request and cached response, this figures out whether to use the network, the cache, or
* both.
*
* <p>Selecting a cache strategy may add conditions to the request (like the "If-Modified-Since"
* header for conditional GETs) or warnings to the cached response (if the cached data is
* potentially stale).
*/
public final class CacheStrategy {
 /** The request to send on the network, or null if this call doesn't use the network. */
 public final Request networkRequest;

 /** The cached response to return or validate; or null if this call doesn't use a cache. */
 public final Response cacheResponse;
 ......
}
  • CacheStrategy$Factory:缓存策略工厂类根据实际请求返回对应的缓存策略

既然实际的缓存工作都是在CacheInterceptor中完成的,那么接下来看下CahceInterceptor的核心方法intercept方法源码:

[CacheInterceptor.java]
@Override public Response intercept(Chain chain) throws IOException {
    //首先尝试获取缓存
    Response cacheCandidate = cache != null
        ? cache.get(chain.request())
        : null;

    long now = System.currentTimeMillis();

      //获取缓存策略
    CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
    Request networkRequest = strategy.networkRequest;
    Response cacheResponse = strategy.cacheResponse;

    //如果有缓存,更新下相关统计指标:命中率
    if (cache != null) {
      cache.trackResponse(strategy);
    }

    //如果当前缓存不符合要求,将其close
    if (cacheCandidate != null && cacheResponse == null) {
      closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
    }

    // 如果不能使用网络,同时又没有符合条件的缓存,直接抛504错误
    if (networkRequest == null && cacheResponse == null) {
      return new Response.Builder()
          .request(chain.request())
          .protocol(Protocol.HTTP_1_1)
          .code(504)
          .message("Unsatisfiable Request (only-if-cached)")
          .body(Util.EMPTY_RESPONSE)
          .sentRequestAtMillis(-1L)
          .receivedResponseAtMillis(System.currentTimeMillis())
          .build();
    }

    // 如果有缓存同时又不使用网络,则直接返回缓存结果
    if (networkRequest == null) {
      return cacheResponse.newBuilder()
          .cacheResponse(stripBody(cacheResponse))
          .build();
    }

    //尝试通过网络获取回复
    Response networkResponse = null;
    try {
      networkResponse = chain.proceed(networkRequest);
    } finally {
      // If we're crashing on I/O or otherwise, don't leak the cache body.
      if (networkResponse == null && cacheCandidate != null) {
        closeQuietly(cacheCandidate.body());
      }
    }

    // 如果既有缓存,同时又发起了请求,说明此时是一个Conditional Get请求
    if (cacheResponse != null) {
      // 如果服务端返回的是NOT_MODIFIED,缓存有效,将本地缓存和网络响应做合并
      if (networkResponse.code() == HTTP_NOT_MODIFIED) {
        Response response = cacheResponse.newBuilder()
            .headers(combine(cacheResponse.headers(), networkResponse.headers()))
            .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
            .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
        networkResponse.body().close();

        // Update the cache after combining headers but before stripping the
        // Content-Encoding header (as performed by initContentStream()).
        cache.trackConditionalCacheHit();
        cache.update(cacheResponse, response);
        return response;
      } else {// 如果响应资源有更新,关掉原有缓存
        closeQuietly(cacheResponse.body());
      }
    }

    Response response = networkResponse.newBuilder()
        .cacheResponse(stripBody(cacheResponse))
        .networkResponse(stripBody(networkResponse))
        .build();

    if (cache != null) {
      if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
        // 将网络响应写入cache中
        CacheRequest cacheRequest = cache.put(response);
        return cacheWritingResponse(cacheRequest, response);
      }

      if (HttpMethod.invalidatesCache(networkRequest.method())) {
        try {
          cache.remove(networkRequest);
        } catch (IOException ignored) {
          // The cache cannot be written.
        }
      }
    }

    return response;
  }

核心逻辑都以中文注释的形式在代码中标注出来了,大家看代码即可。通过上面的代码可以看出,几乎所有的动作都是以CacheStrategy缓存策略为依据做出的,那么接下来看下缓存策略是如何生成的,相关代码实现在CacheStrategy$Factory.get()方法中:

[CacheStrategy$Factory]

    /**
     * Returns a strategy to satisfy {@code request} using the a cached response {@code response}.
     */
    public CacheStrategy get() {
      CacheStrategy candidate = getCandidate();

      if (candidate.networkRequest != null && request.cacheControl().onlyIfCached()) {
        // We're forbidden from using the network and the cache is insufficient.
        return new CacheStrategy(null, null);
      }

      return candidate;
    }

    /** Returns a strategy to use assuming the request can use the network. */
    private CacheStrategy getCandidate() {
      // 若本地没有缓存,发起网络请求
      if (cacheResponse == null) {
        return new CacheStrategy(request, null);
      }

      // 如果当前请求是HTTPS,而缓存没有TLS握手,重新发起网络请求
      if (request.isHttps() && cacheResponse.handshake() == null) {
        return new CacheStrategy(request, null);
      }

      // If this response shouldn't have been stored, it should never be used
      // as a response source. This check should be redundant as long as the
      // persistence store is well-behaved and the rules are constant.
      if (!isCacheable(cacheResponse, request)) {
        return new CacheStrategy(request, null);
      }
        
 
      //如果当前的缓存策略是不缓存或者是conditional get,发起网络请求
      CacheControl requestCaching = request.cacheControl();
      if (requestCaching.noCache() || hasConditions(request)) {
        return new CacheStrategy(request, null);
      }

      //ageMillis:缓存age
      long ageMillis = cacheResponseAge();
      //freshMillis:缓存保鲜时间
      long freshMillis = computeFreshnessLifetime();

      if (requestCaching.maxAgeSeconds() != -1) {
        freshMillis = Math.min(freshMillis, SECONDS.toMillis(requestCaching.maxAgeSeconds()));
      }

      long minFreshMillis = 0;
      if (requestCaching.minFreshSeconds() != -1) {
        minFreshMillis = SECONDS.toMillis(requestCaching.minFreshSeconds());
      }

      long maxStaleMillis = 0;
      CacheControl responseCaching = cacheResponse.cacheControl();
      if (!responseCaching.mustRevalidate() && requestCaching.maxStaleSeconds() != -1) {
        maxStaleMillis = SECONDS.toMillis(requestCaching.maxStaleSeconds());
      }

      //如果 age + min-fresh >= max-age && age + min-fresh < max-age + max-stale,则虽然缓存过期了,     //但是缓存继续可以使用,只是在头部添加 110 警告码
      if (!responseCaching.noCache() && ageMillis + minFreshMillis < freshMillis + maxStaleMillis)         {
        Response.Builder builder = cacheResponse.newBuilder();
        if (ageMillis + minFreshMillis >= freshMillis) {
          builder.addHeader("Warning", "110 HttpURLConnection \"Response is stale\"");
        }
        long oneDayMillis = 24 * 60 * 60 * 1000L;
        if (ageMillis > oneDayMillis && isFreshnessLifetimeHeuristic()) {
          builder.addHeader("Warning", "113 HttpURLConnection \"Heuristic expiration\"");
        }
        return new CacheStrategy(null, builder.build());
      }

      // 发起conditional get请求
      String conditionName;
      String conditionValue;
      if (etag != null) {
        conditionName = "If-None-Match";
        conditionValue = etag;
      } else if (lastModified != null) {
        conditionName = "If-Modified-Since";
        conditionValue = lastModifiedString;
      } else if (servedDate != null) {
        conditionName = "If-Modified-Since";
        conditionValue = servedDateString;
      } else {
        return new CacheStrategy(request, null); // No condition! Make a regular request.
      }

      Headers.Builder conditionalRequestHeaders = request.headers().newBuilder();
      Internal.instance.addLenient(conditionalRequestHeaders, conditionName, conditionValue);

      Request conditionalRequest = request.newBuilder()
          .headers(conditionalRequestHeaders.build())
          .build();
      return new CacheStrategy(conditionalRequest, cacheResponse);
    }

可以看到其核心逻辑在getCandidate函数中。基本就是HTTP缓存协议的实现,核心代码逻辑已通过中文注释说明,大家直接看代码就好。

3. DiskLruCache

Cache内部通过DiskLruCache管理cache在文件系统层面的创建,读取,清理等等工作,接下来看下DiskLruCache的主要逻辑:

public final class DiskLruCache implements Closeable, Flushable {
  
  final FileSystem fileSystem;
  final File directory;
  private final File journalFile;
  private final File journalFileTmp;
  private final File journalFileBackup;
  private final int appVersion;
  private long maxSize;
  final int valueCount;
  private long size = 0;
  BufferedSink journalWriter;
  final LinkedHashMap<String, Entry> lruEntries = new LinkedHashMap<>(0, 0.75f, true);

  // Must be read and written when synchronized on 'this'.
  boolean initialized;
  boolean closed;
  boolean mostRecentTrimFailed;
  boolean mostRecentRebuildFailed;

  /**
   * To differentiate between old and current snapshots, each entry is given a sequence number each
   * time an edit is committed. A snapshot is stale if its sequence number is not equal to its
   * entry's sequence number.
   */
  private long nextSequenceNumber = 0;

  /** Used to run 'cleanupRunnable' for journal rebuilds. */
  private final Executor executor;
  private final Runnable cleanupRunnable = new Runnable() {
    public void run() {
        ......
    }
  };
  ...
  }

3.1 journalFile

DiskLruCache内部日志文件,对cache的每一次读写都对应一条日志记录,DiskLruCache通过分析日志分析和创建cache。日志文件格式如下:

      libcore.io.DiskLruCache
      1
      100
      2

      CLEAN 3400330d1dfc7f3f7f4b8d4d803dfcf6 832 21054
      DIRTY 335c4c6028171cfddfbaae1a9c313c52
      CLEAN 335c4c6028171cfddfbaae1a9c313c52 3934 2342
      REMOVE 335c4c6028171cfddfbaae1a9c313c52
      DIRTY 1ab96a171faeeee38496d8b330771a7a
      CLEAN 1ab96a171faeeee38496d8b330771a7a 1600 234
      READ 335c4c6028171cfddfbaae1a9c313c52
      READ 3400330d1dfc7f3f7f4b8d4d803dfcf6
     
     前5行固定不变,分别为:常量:libcore.io.DiskLruCache;diskCache版本;应用程序版本;valueCount(后文介绍),空行
     
     接下来每一行对应一个cache entry的一次状态记录,其格式为:[状态(DIRTY,CLEAN,READ,REMOVE),key,状态相关value(可选)]:
     - DIRTY:表明一个cache entry正在被创建或更新,每一个成功的DIRTY记录都应该对应一个CLEAN或REMOVE操作。如果一个DIRTY缺少预期匹配的CLEAN/REMOVE,则对应entry操作失败,需要将其从lruEntries中删除
     - CLEAN:说明cache已经被成功操作,当前可以被正常读取。每一个CLEAN行还需要记录其每一个value的长度
     - READ: 记录一次cache读取操作
     - REMOVE:记录一次cache清除
     

日志文件的应用场景主要有四个:

  • DiskCacheLru初始化时通过读取日志文件创建cache容器:lruEntries。同时通过日志过滤操作不成功的cache项。相关逻辑在DiskLruCache.readJournalLine,DiskLruCache.processJournal
  • 初始化完成后,为避免日志文件不断膨胀,对日志进行重建精简,具体逻辑在DiskLruCache.rebuildJournal
  • 每当有cache操作时将其记录入日志文件中以备下次初始化时使用
  • 当冗余日志过多时,通过调用cleanUpRunnable线程重建日志

3.2 DiskLruCache.Entry

每一个DiskLruCache.Entry对应一个cache记录:

  private final class Entry {
    final String key;

    /** Lengths of this entry's files. */
    final long[] lengths;
    final File[] cleanFiles;
    final File[] dirtyFiles;

    /** True if this entry has ever been published. */
    boolean readable;

    /** The ongoing edit or null if this entry is not being edited. */
    Editor currentEditor;

    /** The sequence number of the most recently committed edit to this entry. */
    long sequenceNumber;

    Entry(String key) {
      this.key = key;

      lengths = new long[valueCount];
      cleanFiles = new File[valueCount];
      dirtyFiles = new File[valueCount];

      // The names are repetitive so re-use the same builder to avoid allocations.
      StringBuilder fileBuilder = new StringBuilder(key).append('.');
      int truncateTo = fileBuilder.length();
      for (int i = 0; i < valueCount; i++) {
        fileBuilder.append(i);
        cleanFiles[i] = new File(directory, fileBuilder.toString());
        fileBuilder.append(".tmp");
        dirtyFiles[i] = new File(directory, fileBuilder.toString());
        fileBuilder.setLength(truncateTo);
      }
    }
    ...
     
        /**
     * Returns a snapshot of this entry. This opens all streams eagerly to guarantee that we see a
     * single published snapshot. If we opened streams lazily then the streams could come from
     * different edits.
     */
    Snapshot snapshot() {
      if (!Thread.holdsLock(DiskLruCache.this)) throw new AssertionError();

      Source[] sources = new Source[valueCount];
      long[] lengths = this.lengths.clone(); // Defensive copy since these can be zeroed out.
      try {
        for (int i = 0; i < valueCount; i++) {
          sources[i] = fileSystem.source(cleanFiles[i]);
        }
        return new Snapshot(key, sequenceNumber, sources, lengths);
      } catch (FileNotFoundException e) {
        // A file must have been deleted manually!
        for (int i = 0; i < valueCount; i++) {
          if (sources[i] != null) {
            Util.closeQuietly(sources[i]);
          } else {
            break;
          }
        }
        // Since the entry is no longer valid, remove it so the metadata is accurate (i.e. the cache
        // size.)
        try {
          removeEntry(this);
        } catch (IOException ignored) {
        }
        return null;
      }
    }
  }

一个Entry主要由以下几部分构成:

  • key:每个cache都有一个key作为其标识符。当前cache的key为其对应URL的MD5字符串
  • cleanFiles/dirtyFiles:每一个Entry对应多个文件,其对应的文件数由DiskLruCache.valueCount指定。当前在OkHttp中valueCount为2。即每个cache对应2个cleanFiles,2个dirtyFiles。其中第一个cleanFiles/dirtyFiles记录cache的meta数据(如URL,创建时间,SSL握手记录等等),第二个文件记录cache的真正内容。cleanFiles记录处于稳定状态的cache结果,dirtyFiles记录处于创建或更新状态的cache
  • currentEditor:entry编辑器,对entry的所有操作都是通过其编辑器完成。编辑器内部添加了同步锁

3.3 cleanupRunnable

清理线程,用于重建精简日志:

  private final Runnable cleanupRunnable = new Runnable() {
    public void run() {
      synchronized (DiskLruCache.this) {
        if (!initialized | closed) {
          return; // Nothing to do
        }

        try {
          trimToSize();
        } catch (IOException ignored) {
          mostRecentTrimFailed = true;
        }

        try {
          if (journalRebuildRequired()) {
            rebuildJournal();
            redundantOpCount = 0;
          }
        } catch (IOException e) {
          mostRecentRebuildFailed = true;
          journalWriter = Okio.buffer(Okio.blackhole());
        }
      }
    }
  };

其触发条件在journalRebuildRequired()方法中:

  /**
   * We only rebuild the journal when it will halve the size of the journal and eliminate at least
   * 2000 ops.
   */
  boolean journalRebuildRequired() {
    final int redundantOpCompactThreshold = 2000;
    return redundantOpCount >= redundantOpCompactThreshold
        && redundantOpCount >= lruEntries.size();
  }

当冗余日志超过日志文件本身的一般且总条数超过2000时执行

3.4 SnapShot

cache快照,记录了特定cache在某一个特定时刻的内容。每次向DiskLruCache请求时返回的都是目标cache的一个快照,相关逻辑在DiskLruCache.get中:

[DiskLruCache.java]  
/**
   * Returns a snapshot of the entry named {@code key}, or null if it doesn't exist is not currently
   * readable. If a value is returned, it is moved to the head of the LRU queue.
   */
  public synchronized Snapshot get(String key) throws IOException {
    initialize();

    checkNotClosed();
    validateKey(key);
    Entry entry = lruEntries.get(key);
    if (entry == null || !entry.readable) return null;

    Snapshot snapshot = entry.snapshot();
    if (snapshot == null) return null;

    redundantOpCount++;
    //日志记录
    journalWriter.writeUtf8(READ).writeByte(' ').writeUtf8(key).writeByte('\n');
    if (journalRebuildRequired()) {
      executor.execute(cleanupRunnable);
    }

    return snapshot;
  }

3.5 lruEntries

管理cache entry的容器,其数据结构是LinkedHashMap。通过LinkedHashMap本身的实现逻辑达到cache的LRU替换

3.6 FileSystem

使用Okio对File的封装,简化了I/O操作。

3.7 DiskLruCache.edit

DiskLruCache可以看成是Cache在文件系统层的具体实现,所以其基本操作接口存在一一对应的关系:

  • Cache.get() —>DiskLruCache.get()
  • Cache.put()—>DiskLruCache.edit() //cache插入
  • Cache.remove()—>DiskLruCache.remove()
  • Cache.update()—>DiskLruCache.edit()//cache更新

其中get操作在3.4已经介绍了,remove操作较为简单,put和update大致逻辑相似,因为篇幅限制,这里仅介绍Cache.put操作的逻辑,其他的操作大家看代码就好:

[okhttp3.Cache.java]
  CacheRequest put(Response response) {
    String requestMethod = response.request().method();

    if (HttpMethod.invalidatesCache(response.request().method())) {
      try {
        remove(response.request());
      } catch (IOException ignored) {
        // The cache cannot be written.
      }
      return null;
    }
    if (!requestMethod.equals("GET")) {
      // Don't cache non-GET responses. We're technically allowed to cache
      // HEAD requests and some POST requests, but the complexity of doing
      // so is high and the benefit is low.
      return null;
    }

    if (HttpHeaders.hasVaryAll(response)) {
      return null;
    }

    Entry entry = new Entry(response);
    DiskLruCache.Editor editor = null;
    try {
      editor = cache.edit(key(response.request().url()));
      if (editor == null) {
        return null;
      }
      entry.writeTo(editor);
      return new CacheRequestImpl(editor);
    } catch (IOException e) {
      abortQuietly(editor);
      return null;
    }
  }

可以看到核心逻辑在editor = cache.edit(key(response.request().url()));,相关代码在DiskLruCache.edit:

[okhttp3.internal.cache.DiskLruCache.java]  
synchronized Editor edit(String key, long expectedSequenceNumber) throws IOException {
    initialize();

    checkNotClosed();
    validateKey(key);
    Entry entry = lruEntries.get(key);
    if (expectedSequenceNumber != ANY_SEQUENCE_NUMBER && (entry == null
        || entry.sequenceNumber != expectedSequenceNumber)) {
      return null; // Snapshot is stale.
    }
    if (entry != null && entry.currentEditor != null) {
      return null; // 当前cache entry正在被其他对象操作
    }
    if (mostRecentTrimFailed || mostRecentRebuildFailed) {
      // The OS has become our enemy! If the trim job failed, it means we are storing more data than
      // requested by the user. Do not allow edits so we do not go over that limit any further. If
      // the journal rebuild failed, the journal writer will not be active, meaning we will not be
      // able to record the edit, causing file leaks. In both cases, we want to retry the clean up
      // so we can get out of this state!
      executor.execute(cleanupRunnable);
      return null;
    }

    // 日志接入DIRTY记录
    journalWriter.writeUtf8(DIRTY).writeByte(' ').writeUtf8(key).writeByte('\n');
    journalWriter.flush();

    if (hasJournalErrors) {
      return null; // Don't edit; the journal can't be written.
    }

    if (entry == null) {
      entry = new Entry(key);
      lruEntries.put(key, entry);
    }
    Editor editor = new Editor(entry);
    entry.currentEditor = editor;
    return editor;
  }

edit方法返回对应CacheEntry的editor编辑器。接下来再来看下Cache.put()方法的entry.writeTo(editor);,其相关逻辑:

[okhttp3.internal.cache.DiskLruCache.java]    
public void writeTo(DiskLruCache.Editor editor) throws IOException {
      BufferedSink sink = Okio.buffer(editor.newSink(ENTRY_METADATA));

      sink.writeUtf8(url)
          .writeByte('\n');
      sink.writeUtf8(requestMethod)
          .writeByte('\n');
      sink.writeDecimalLong(varyHeaders.size())
          .writeByte('\n');
      for (int i = 0, size = varyHeaders.size(); i < size; i++) {
        sink.writeUtf8(varyHeaders.name(i))
            .writeUtf8(": ")
            .writeUtf8(varyHeaders.value(i))
            .writeByte('\n');
      }

      sink.writeUtf8(new StatusLine(protocol, code, message).toString())
          .writeByte('\n');
      sink.writeDecimalLong(responseHeaders.size() + 2)
          .writeByte('\n');
      for (int i = 0, size = responseHeaders.size(); i < size; i++) {
        sink.writeUtf8(responseHeaders.name(i))
            .writeUtf8(": ")
            .writeUtf8(responseHeaders.value(i))
            .writeByte('\n');
      }
      sink.writeUtf8(SENT_MILLIS)
          .writeUtf8(": ")
          .writeDecimalLong(sentRequestMillis)
          .writeByte('\n');
      sink.writeUtf8(RECEIVED_MILLIS)
          .writeUtf8(": ")
          .writeDecimalLong(receivedResponseMillis)
          .writeByte('\n');

      if (isHttps()) {
        sink.writeByte('\n');
        sink.writeUtf8(handshake.cipherSuite().javaName())
            .writeByte('\n');
        writeCertList(sink, handshake.peerCertificates());
        writeCertList(sink, handshake.localCertificates());
        // The handshake’s TLS version is null on HttpsURLConnection and on older cached responses.
        if (handshake.tlsVersion() != null) {
          sink.writeUtf8(handshake.tlsVersion().javaName())
              .writeByte('\n');
        }
      }
      sink.close();
    }

其主要逻辑就是将对应请求的meta数据写入对应CacheEntry的索引为ENTRY_METADATA(0)的dirtyfile中。

最后再来看Cache.put()方法的return new CacheRequestImpl(editor);:

[okhttp3.Cache$CacheRequestImpl]
private final class CacheRequestImpl implements CacheRequest {
    private final DiskLruCache.Editor editor;
    private Sink cacheOut;
    private Sink body;
    boolean done;

    public CacheRequestImpl(final DiskLruCache.Editor editor) {
      this.editor = editor;
      this.cacheOut = editor.newSink(ENTRY_BODY);
      this.body = new ForwardingSink(cacheOut) {
        @Override public void close() throws IOException {
          synchronized (Cache.this) {
            if (done) {
              return;
            }
            done = true;
            writeSuccessCount++;
          }
          super.close();
          editor.commit();
        }
      };
    }

    @Override public void abort() {
      synchronized (Cache.this) {
        if (done) {
          return;
        }
        done = true;
        writeAbortCount++;
      }
      Util.closeQuietly(cacheOut);
      try {
        editor.abort();
      } catch (IOException ignored) {
      }
    }

    @Override public Sink body() {
      return body;
    }
  }

其中close,abort方法会调用editor.aborteditor.commit来更新日志,editor.commit还会将dirtyFile重置为cleanFile作为稳定可用的缓存,相关逻辑在okhttp3.internal.cache.DiskLruCache$Editor.completeEdit中:

[okhttp3.internal.cache.DiskLruCache$Editor.completeEdit]  
synchronized void completeEdit(Editor editor, boolean success) throws IOException {
    Entry entry = editor.entry;
    if (entry.currentEditor != editor) {
      throw new IllegalStateException();
    }

    // If this edit is creating the entry for the first time, every index must have a value.
    if (success && !entry.readable) {
      for (int i = 0; i < valueCount; i++) {
        if (!editor.written[i]) {
          editor.abort();
          throw new IllegalStateException("Newly created entry didn't create value for index " + i);
        }
        if (!fileSystem.exists(entry.dirtyFiles[i])) {
          editor.abort();
          return;
        }
      }
    }

    for (int i = 0; i < valueCount; i++) {
      File dirty = entry.dirtyFiles[i];
      if (success) {
        if (fileSystem.exists(dirty)) {
          File clean = entry.cleanFiles[i];
          fileSystem.rename(dirty, clean);//将dirtyfile置为cleanfile
          long oldLength = entry.lengths[i];
          long newLength = fileSystem.size(clean);
          entry.lengths[i] = newLength;
          size = size - oldLength + newLength;
        }
      } else {
        fileSystem.delete(dirty);//若失败则删除dirtyfile
      }
    }

    redundantOpCount++;
    entry.currentEditor = null;
    //更新日志
    if (entry.readable | success) {
      entry.readable = true;
      journalWriter.writeUtf8(CLEAN).writeByte(' ');
      journalWriter.writeUtf8(entry.key);
      entry.writeLengths(journalWriter);
      journalWriter.writeByte('\n');
      if (success) {
        entry.sequenceNumber = nextSequenceNumber++;
      }
    } else {
      lruEntries.remove(entry.key);
      journalWriter.writeUtf8(REMOVE).writeByte(' ');
      journalWriter.writeUtf8(entry.key);
      journalWriter.writeByte('\n');
    }
    journalWriter.flush();

    if (size > maxSize || journalRebuildRequired()) {
      executor.execute(cleanupRunnable);
    }
  }

CacheRequestImpl实现CacheRequest接口,向外部类(主要是CacheInterceptor)透出,外部对象通过CacheRequestImpl更新或写入缓存数据。

3.8总结

总结起来DiskLruCache主要有以下几个特点:

  • 通过LinkedHashMap实现LRU替换
  • 通过本地维护Cache操作日志保证Cache原子性与可用性,同时为防止日志过分膨胀定时执行日志精简
  • 每一个Cache项对应两个状态副本:DIRTY,CLEAN。CLEAN表示当前可用状态Cache,外部访问到的cache快照均为CLEAN状态;DIRTY为更新态Cache。由于更新和创建都只操作DIRTY状态副本,实现了Cache的读写分离
  • 每一个Cache项有四个文件,两个状态(DIRTY,CLEAN),每个状态对应两个文件:一个文件存储Cache meta数据,一个文件存储Cache内容数据
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
3月前
|
缓存 算法 数据挖掘
深入理解缓存更新策略:从LRU到LFU
【10月更文挑战第7天】 在本文中,我们将探讨计算机系统中缓存机制的核心——缓存更新策略。缓存是提高数据检索速度的关键技术之一,无论是在硬件还是软件层面都扮演着重要角色。我们会详细介绍最常用的两种缓存算法:最近最少使用(LRU)和最少使用频率(LFU),并讨论它们的优缺点及适用场景。通过对比分析,旨在帮助读者更好地理解如何选择和实现适合自己需求的缓存策略,从而优化系统性能。
73 3
|
28天前
|
缓存 API C#
C# 一分钟浅谈:GraphQL 中的缓存策略
本文介绍了在现代 Web 应用中,随着数据复杂度的增加,GraphQL 作为一种更灵活的数据查询语言的重要性,以及如何通过缓存策略优化其性能。文章详细探讨了客户端缓存、网络层缓存和服务器端缓存的实现方法,并提供了 C# 示例代码,帮助开发者理解和应用这些技术。同时,文中还讨论了缓存设计中的常见问题及解决方案,如缓存键设计、缓存失效策略等,旨在提升应用的响应速度和稳定性。
42 13
|
11天前
|
存储 消息中间件 设计模式
缓存数据一致性策略如何分类?
数据库与缓存数据一致性问题的解决方案主要分为强一致性和最终一致性。强一致性通过分布式锁或分布式事务确保每次写入后数据立即一致,适合高要求场景,但性能开销大。最终一致性允许短暂延迟,常用方案包括Cache-Aside(先更新DB再删缓存)、Read/Write-Through(读写穿透)和Write-Behind(异步写入)。延时双删策略通过两次删除缓存确保数据最终一致,适用于复杂业务场景。选择方案需根据系统复杂度和一致性要求权衡。
42 0
|
2月前
|
存储 缓存 安全
在 Service Worker 中配置缓存策略
Service Worker 是一种可编程的网络代理,允许开发者控制网页如何加载资源。通过在 Service Worker 中配置缓存策略,可以优化应用性能,减少加载时间,提升用户体验。此策略涉及缓存的存储、更新和检索机制。
|
2月前
|
存储 缓存 监控
利用 Redis 缓存特性避免缓存穿透的策略与方法
【10月更文挑战第23天】通过以上对利用 Redis 缓存特性避免缓存穿透的详细阐述,我们对这一策略有了更深入的理解。在实际应用中,我们需要根据具体情况灵活运用这些方法,并结合其他技术手段,共同保障系统的稳定和高效运行。同时,要不断关注 Redis 缓存特性的发展和变化,及时调整策略,以应对不断出现的新挑战。
75 10
|
2月前
|
Web App开发 缓存 UED
如何设置浏览器的缓存策略?
【10月更文挑战第23天】通过合理地设置浏览器的缓存策略,可以在提高网页性能、减少网络流量的同时,确保用户能够获取到最新的内容,从而提升用户体验和网站的性能优化效果。
123 4
|
2月前
|
存储 消息中间件 缓存
缓存策略
【10月更文挑战第25天】在实际应用中,还需要不断地监控和调整缓存策略,以适应系统的变化和发展。
|
2月前
|
缓存 监控 NoSQL
Redis 缓存穿透及其应对策略
【10月更文挑战第23天】通过以上对 Redis 缓存穿透的详细阐述,我们对这一问题有了更深入的理解。在实际应用中,我们需要根据具体情况综合运用多种方法来解决缓存穿透问题,以保障系统的稳定运行和高效性能。同时,要不断关注技术的发展和变化,及时调整策略,以应对不断出现的新挑战。
59 4
|
3月前
|
存储 缓存 NoSQL
保持HTTP会话状态:缓存策略与实践
保持HTTP会话状态:缓存策略与实践
|
3月前
|
缓存 分布式计算 NoSQL
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
84 2