当神经网络训练好以后我们得到了什么?

简介: 理解神经网络训练

image.png
神经网络在训练的过程中,学习了很多参数,通常也被称作 权重矩阵W.
在CNN等网络中, 前面的基层卷积层的参数可视化后,可以看到训练图片的一些关键组件.
image.png
通常我们可以理解为纹理.
如果,我们训练的网络不是CNN,而是TCN/DeepFM/GCN等没有明确视觉含义的数据呢?
这时候,网络学会的到底是什么呢?

我们可以从一对向量的点积来寻找线索. 我们假设向量已经做了LayerNormalization,那么很容易得到 当两个向量一摸一样的时候, 其点积是最大的.

让我们再看下下面这张图所代表的一个普通4层MLP:
image.png
对于第二层任意神经元来说, 其输入,就是第一层输出向量X点积该神经元所有输入连接的权重W,这里忽略偏置量b.
X和W的点积,在两者标准化的情况下, X和W越接近,其点积越大,越可能越过激活函数的爬升段,表现为该神经元越可能激活.

到此,我们虽然设置了一些约束条件, 但是,已经可以断定,神经网络训练的过程, 就是学习很多不同的模式,以及模式的模式的过程, 并不断根据反向传播的梯度调整模式的样式.

一句话,神经网络就是一个模式匹配器.

目录
相关文章
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
213 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
3月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
77 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
5月前
|
机器学习/深度学习
神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因
本文分析了神经网络中验证集(测试集)准确率高于训练集准确率的四个可能原因,包括数据集大小和分布不均、模型正则化过度、批处理后准确率计算时机不同,以及训练集预处理过度导致分布变化。
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
92 8
|
3月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
86 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
3月前
|
机器学习/深度学习 算法 TensorFlow
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
学习率是深度学习中的关键超参数,它影响模型的训练进度和收敛性,过大或过小的学习率都会对网络训练产生负面影响,需要通过适当的设置和调整策略来优化。
694 0
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
|
3月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
5月前
|
机器学习/深度学习
|
5月前
|
安全 Apache 数据安全/隐私保护
你的Wicket应用安全吗?揭秘在Apache Wicket中实现坚不可摧的安全认证策略
【8月更文挑战第31天】在当前的网络环境中,安全性是任何应用程序的关键考量。Apache Wicket 是一个强大的 Java Web 框架,提供了丰富的工具和组件,帮助开发者构建安全的 Web 应用程序。本文介绍了如何在 Wicket 中实现安全认证,
56 0

热门文章

最新文章