Hive引擎Spark优化配置参数2

简介: 上一篇内容讲了资源参数优化,本篇继续说明spark driver以及spark shuffle相关的参数调优。

扩展spark driver

动态资源分配

在 Facebook,Spark 集群启用了动态资源分配(Dynamic Executor Allocation),以便更好的使用集群资源,而且在 Facebook 内部,Spark 是运行在多租户的集群上,所以这个也是非常合适的。比如典型的配置如下:

spark.dynamicAllocation.enabled = true
spark.dynamicAllocation.executorIdleTimeout = 2m
spark.dynamicAllocation.minExecutors = 1
spark.dynamicAllocation.maxExecutors = 2000

多线程事件处理

在 Spark 2.3 版本之前,事件处理是单线程的架构,也就是说,事件队列里面的事件得一个一个处理。如果你的作业很大,并且有很多 tasks,很可能会导致事件处理出现延迟,进一步导致作业性能出现问题,甚至使当前作业失败。为了解决这个问题,SPARK-18838 这个 ISSUE 引入了多线程事件处理架构,每个事件都有其单独的单线程 executor service 去处理,这样就可以大大减少事件处理延时的问题。另外,由于每类事件都有单独的事件队列,所以会增加 Driver 端的内存占用。

更好的 Fetch 失败处理

在 Spark 2.3 版本之前,如果 Spark 探测到 fetch failure,那么它会把产生这个 shuffle 文件的 Executor 移除掉。但是如果这个 Executor 所在的机器有很多 Executor,而且是因为这台机器挂掉导致 fetch failure,那么会导致很多的 fetch 重试,这种处理机制很低下。SPARK-19753 这个 ISSUE 使得 Spark 可以把上述场景所有 Executor 的 shuffle 文件移除,也就是不再去重试就知道 shuffle 文件不可用。

另外,Spark 最大 Fetch 重试次数也可以通过 spark.max.fetch.failures.per.stage 参数配置。

FetchFailed 会在 ShuffleReader 取数据失败 N 次后抛出,然后由 executor 通过 statusUpdate 传到 driver 端,实际的处理会在 DAGScheduler.handleTaskCompletion,它会重新提交该 Stage 和该 Stage 对应的 ShuffleMapStage,重试次数超过 spark.stage.maxConsecutiveAttempts 时会退出。

RPC 服务线程调优

当 Spark 同时运行大量的 tasks 时,Driver 很容易出现 OOM,这是因为在 Driver 端的 Netty 服务器上产生大量 RPC 的请求积压,我们可以通过加大 RPC 服务的线程数解决 OOM 问题,比如 spark.rpc.io.serverThreads = 64。

spark shuffle相关的参数调优

**spark.shuffle.file.buffer
**
默认值:32k

参数说明:该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小。将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘。

调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k),从而减少shuffle write过程中溢写磁盘文件的次数,也就可以减少磁盘IO次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。

spark.reducer.maxSizeInFlight

默认值:48m

参数说明:该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据。

调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。

**spark.shuffle.io.maxRetries
**
默认值:3

参数说明:shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败。

调优建议:对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。

spark.shuffle.io.retryWait

默认值:5s

参数说明:具体解释同上,该参数代表了每次重试拉取数据的等待间隔,默认是5s。

调优建议:建议加大间隔时长(比如60s),以增加shuffle操作的稳定性。

spark.shuffle.memoryFraction

默认值:0.2

参数说明:该参数代表了Executor内存中,分配给shuffle read task进行聚合操作的内存比例,默认是20%。

调优建议:如果内存充足,而且很少使用持久化操作,建议调高这个比例,给shuffle read的聚合操作更多内存,以避免由于内存不足导致聚合过程中频繁读写磁盘。在实践中发现,合理调节该参数可以将性能提升10%左右。

spark.shuffle.manager

默认值:sort

参数说明:该参数用于设置ShuffleManager的类型。Spark 1.5以后,有三个可选项:hash、sort和tungsten-sort。HashShuffleManager是Spark 1.2以前的默认选项,但是Spark 1.2以及之后的版本默认都是SortShuffleManager了。tungsten-sort与sort类似,但是使用了tungsten计划中的堆外内存管理机制,内存使用效率更高。

调优建议:由于SortShuffleManager默认会对数据进行排序,因此如果你的业务逻辑中需要该排序机制的话,则使用默认的SortShuffleManager就可以;而如果你的业务逻辑不需要对数据进行排序,那么建议参考后面的几个参数调优,通过bypass机制或优化的HashShuffleManager来避免排序操作,同时提供较好的磁盘读写性能。这里要注意的是,tungsten-sort要慎用,因为之前发现了一些相应的bug。

spark.shuffle.sort.bypassMergeThreshold

默认值:200

参数说明:当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。

调优建议:当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量。那么此时就会自动启用bypass机制,map-side就不会进行排序了,减少了排序的性能开销。但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。

spark.shuffle.consolidateFiles

默认值:false

参数说明:如果使用HashShuffleManager,该参数有效。如果设置为true,那么就会开启consolidate机制,会大幅度合并shuffle write的输出文件,对于shuffle read task数量特别多的情况下,这种方法可以极大地减少磁盘IO开销,提升性能。

调优建议:如果的确不需要SortShuffleManager的排序机制,那么除了使用bypass机制,还可以尝试将spark.shffle.manager参数手动指定为hash,使用HashShuffleManager,同时开启consolidate机制。在实践中尝试过,发现其性能比开启了bypass机制的SortShuffleManager要高出10%~30%。

spark.reducer.maxBlocksInFlightPerAddress

默认值:Int.MaxValue(2的31次方-1)

限制了每个主机每次reduce可以被多少台远程主机拉取文件块,调低这个参数可以有效减轻node manager的负载。

**spark.reducer.maxReqsInFlight
**
默认值:Int.MaxValue(2的31次方-1)

限制远程机器拉取本机器文件块的请求数,随着集群增大,需要对此做出限制。否则可能会使本机负载过大而挂掉。。

spark.reducer.maxReqSizeShuffleToMem

默认值:Long.MaxValue

shuffle请求的文件块大小 超过这个参数值,就会被强行落盘,防止一大堆并发请求把内存占满。

spark.shuffle.compress

默认压缩 true

是否压缩map输出文件

spark.shuffle.spill.compress

默认:true

shuffle过程中溢出的文件是否压缩,使用spark.io.compression.codec压缩。

了解更多
大数据运维服务

目录
相关文章
|
10天前
|
SQL 分布式计算 IDE
如何在IDE中通过Spark操作Hive
通过以上方法和代码示例,你可以在IDE中成功通过Spark操作Hive,实现大规模数据处理和分析。确保理解每一步的实现细节,应用到实际项目中时能有效地处理各种复杂的数据场景。
68 28
|
11天前
|
SQL 分布式计算 关系型数据库
基于云服务器的数仓搭建-hive/spark安装
本文介绍了在本地安装和配置MySQL、Hive及Spark的过程。主要内容包括: - **MySQL本地安装**:详细描述了内存占用情况及安装步骤,涉及安装脚本的编写与执行,以及连接MySQL的方法。 - **Hive安装**:涵盖了从上传压缩包到配置环境变量的全过程,并解释了如何将Hive元数据存储配置到MySQL中。 - **Hive与Spark集成**:说明了如何安装Spark并将其与Hive集成,确保Hive任务由Spark执行,同时解决了依赖冲突问题。 - **常见问题及解决方法**:列举了安装过程中可能遇到的问题及其解决方案,如内存配置不足、节点间通信问题等。
152 1
基于云服务器的数仓搭建-hive/spark安装
|
4天前
|
SQL 关系型数据库 MySQL
seatunnel配置mysql2hive
本文介绍了SeaTunnel的安装与使用教程,涵盖从安装、配置到数据同步的全过程。主要内容包括: 1. **SeaTunnel安装**:详细描述了下载、解压及配置连接器等步骤。 2. **模拟数据到Hive (fake2hive)**:通过编辑测试脚本,将模拟数据写入Hive表。 3. **MySQL到控制台 (mysql2console)**:创建配置文件并执行命令,将MySQL数据输出到控制台。 4. **MySQL到Hive (mysql2hive)**:创建Hive表,配置并启动同步任务,支持单表和多表同步。
75 15
|
5月前
|
SQL 分布式计算 关系型数据库
Hadoop-13-Hive 启动Hive 修改启动参数命令行启动测试 几句简单的HQL了解Hive
Hadoop-13-Hive 启动Hive 修改启动参数命令行启动测试 几句简单的HQL了解Hive
102 2
|
5月前
|
SQL 存储 分布式计算
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
Hadoop-16-Hive HiveServer2 HS2 允许客户端远程执行HiveHQL HCatalog 集群规划 实机配置运行
93 3
|
5月前
|
SQL 存储 数据管理
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
97 2
|
5月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
130 0
|
7月前
|
分布式计算 DataWorks Java
DataWorks产品使用合集之如何引用在spark jar中引用密文的空间参数
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
10月前
|
SQL 数据采集 数据挖掘
大数据行业应用之Hive数据分析航班线路相关的各项指标
大数据行业应用之Hive数据分析航班线路相关的各项指标
243 1
|
8月前
|
SQL 分布式计算 大数据
大数据处理平台Hive详解
【7月更文挑战第15天】Hive作为基于Hadoop的数据仓库工具,在大数据处理和分析领域发挥着重要作用。通过提供类SQL的查询语言,Hive降低了数据处理的门槛,使得具有SQL背景的开发者可以轻松地处理大规模数据。然而,Hive也存在查询延迟高、表达能力有限等缺点,需要在实际应用中根据具体场景和需求进行选择和优化。