30 条 SQL 语句性能优化策略,建议收藏!

简介: 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

关于MySQL的知识点总结了一个思维导图,希望对大家所有帮助!

MySQL知识点总结.jpg

关注公众号:程序员白楠楠,领取2020最新Java面试题手册(200多页PDF文档)。

1

对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

2

应尽量避免在 where 子句中对字段进行 null 值判断,创建表时NULL是默认值,但大多数时候应该使用NOT NULL,或者使用一个特殊的值,如0,-1作为默 认值。

3

应尽量避免在 where 子句中使用!=或<>操作符, MySQL只有对以下操作符才使用索引:<,<=,=,>,>=,BETWEEN,IN,以及某些时候的LIKE。

4

应尽量避免在 where 子句中使用 or 来连接条件, 否则将导致引擎放弃使用索引而进行全表扫描, 可以 使用UNION合并查询:select id from t where num=10 union all select id from t where num=20

5

in 和 not in 也要慎用,否则会导致全表扫描,对于连续的数值,能用 between 就不要用 in 了:Select id from t where num between 1 and 3

6

下面的查询也将导致全表扫描:select id from t where name like ‘%abc%’ 或者select id from t where name like ‘%abc’若要提高效率,可以考虑全文检索。而select id from t where name like ‘abc%’ 才用到索引

7

如果在 where 子句中使用参数,也会导致全表扫描。

8

应尽量避免在 where 子句中对字段进行表达式操作,应尽量避免在where子句中对字段进行函数操作

9

很多时候用 exists 代替 in 是一个好的选择:select num from a where num in(select num from b).用下面的语句替换:select num from a where exists(select 1 from b where num=a.num)

10

索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

11

应尽可能的避免更新 clustered 索引数据列, 因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

12

尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。

13

尽可能的使用 varchar/nvarchar 代替 char/nchar , 因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

14

最好不要使用”“返回所有:select from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

15

尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

16

使用表的别名(Alias):当在SQL语句中连接多个表时,请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误。

17

使用“临时表”暂存中间结果

简化SQL语句的重要方法就是采用临时表暂存中间结果,但是,临时表的好处远远不止这些,将临时结果暂存在临时表,后面的查询就在tempdb中了,这可以避免程序中多次扫描主表,也大大减少了程序执行中“共享锁”阻塞“更新锁”,减少了阻塞,提高了并发性能。

18

一些SQL查询语句应加上nolock,读、写是会相互阻塞的,为了提高并发性能,对于一些查询,可以加上nolock,这样读的时候可以允许写,但缺点是可能读到未提交的脏数据。使用 nolock有3条原则。查询的结果用于“插、删、改”的不能加nolock !查询的表属于频繁发生页分裂的,慎用nolock !使用临时表一样可以保存“数据前影”,起到类似Oracle的undo表空间的功能,能采用临时表提高并发性能的,不要用nolock 。

19

常见的简化规则如下:不要有超过5个以上的表连接(JOIN),考虑使用临时表或表变量存放中间结果。少用子查询,视图嵌套不要过深,一般视图嵌套不要超过2个为宜。

20

将需要查询的结果预先计算好放在表中,查询的时候再Select。这在SQL7.0以前是最重要的手段。例如医院的住院费计算。

21

用OR的字句可以分解成多个查询,并且通过UNION 连接多个查询。他们的速度只同是否使用索引有关,如果查询需要用到联合索引,用UNION all执行的效率更高.多个OR的字句没有用到索引,改写成UNION的形式再试图与索引匹配。一个关键的问题是否用到索引。

22

在IN后面值的列表中,将出现最频繁的值放在最前面,出现得最少的放在最后面,减少判断的次数。

23

尽量将数据的处理工作放在服务器上,减少网络的开销,如使用存储过程。存储过程是编译好、优化过、并且被组织到一个执行规划里、且存储在数据库中的SQL语句,是控制流语言的集合,速度当然快。反复执行的动态SQL,可以使用临时存储过程,该过程(临时表)被放在Tempdb中。

24

当服务器的内存够多时,配制线程数量 = 最大连接数+5,这样能发挥最大的效率;否则使用 配制线程数量<最大连接数启用SQL SERVER的线程池来解决,如果还是数量 = 最大连接数+5,严重的损害服务器的性能。

25

查询的关联同写的顺序

select a.personMemberID, * from chineseresume a,personmember b where personMemberID = b.referenceid and a.personMemberID = ‘JCNPRH39681’ (A = B ,B = ‘号码’)

select a.personMemberID, * from chineseresume a,personmember b where a.personMemberID = b.referenceid and a.personMemberID = ‘JCNPRH39681’ and b.referenceid = ‘JCNPRH39681’ (A = B ,B = ‘号码’, A = ‘号码’)

select a.personMemberID, * from chineseresume a,personmember b where b.referenceid = ‘JCNPRH39681’ and a.personMemberID = ‘JCNPRH39681’ (B = ‘号码’, A = ‘号码’)

26

尽量使用exists代替select count(1)来判断是否存在记录,count函数只有在统计表中所有行数时使用,而且count(1)比count(*)更有效率。

27

尽量使用“>=”,不要使用“>”。

28

索引的使用规范:索引的创建要与应用结合考虑,建议大的OLTP表不要超过6个索引;尽可能的使用索引字段作为查询条件,尤其是聚簇索引,必要时可以通过index index_name来强制指定索引;避免对大表查询时进行table scan,必要时考虑新建索引;在使用索引字段作为条件时,如果该索引是联合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用;要注意索引的维护,周期性重建索引,重新编译存储过程。

29

下列SQL条件语句中的列都建有恰当的索引,但执行速度却非常慢:

SELECT * FROM record WHERE substrINg(card_no,1,4)=’5378’ (13秒)

SELECT * FROM record WHERE amount/30< 1000 (11秒)

SELECT * FROM record WHERE convert(char(10),date,112)=’19991201’ (10秒)

分析:

WHERE子句中对列的任何操作结果都是在SQL运行时逐列计算得到的,因此它不得不进行表搜索,而没有使用该列上面的索引;如果这些结果在查询编译时就能得到,那么就可以被SQL优化器优化,使用索引,避免表搜索,因此将SQL重写成下面这样:

SELECT * FROM record WHERE card_no like ‘5378%’ (< 1秒)

SELECT * FROM record WHERE amount< 1000*30 (< 1秒)

SELECT * FROM record WHERE date= ‘1999/12/01’ (< 1秒)

30

当有一批处理的插入或更新时,用批量插入或批量更新,绝不会一条条记录的去更新!

总结

关注公众号:程序员白楠楠, 领取2020最新Java面试题手册(200多页PDF文档)。

相关文章
|
6天前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
2月前
|
存储 SQL 关系型数据库
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
MySQL调优主要分为三个步骤:监控报警、排查慢SQL、MySQL调优。 排查慢SQL:开启慢查询日志 、找出最慢的几条SQL、分析查询计划 。 MySQL调优: 基础优化:缓存优化、硬件优化、参数优化、定期清理垃圾、使用合适的存储引擎、读写分离、分库分表; 表设计优化:数据类型优化、冷热数据分表等。 索引优化:考虑索引失效的11个场景、遵循索引设计原则、连接查询优化、排序优化、深分页查询优化、覆盖索引、索引下推、用普通索引等。 SQL优化。
536 15
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
|
1月前
|
SQL 监控 Oracle
Oracle SQL性能优化全面指南
在数据库管理领域,Oracle SQL性能优化是确保数据库高效运行和数据查询速度的关键
|
1月前
|
SQL 数据挖掘 数据库
SQL查询每秒的数据:技巧、方法与性能优化
id="">SQL查询功能详解 SQL(Structured Query Language,结构化查询语言)是一种专门用于与数据库进行沟通和操作的语言
|
1月前
|
SQL 关系型数据库 数据库
克服“写不出来SQL”的困境:策略与技巧
在数据库管理和开发中,SQL(Structured Query Language)是不可或缺的工具
|
1月前
|
SQL Oracle 关系型数据库
SQL整库导出语录:全面解析与高效执行策略
在数据库管理和维护过程中,整库导出是一项常见的需求,无论是为了备份、迁移还是数据分析,掌握如何高效、准确地导出整个数据库至关重要
|
1月前
|
SQL 存储 数据库
慢SQL对数据库写入性能的影响及优化策略
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生不利影响
|
3月前
|
数据库 Java 监控
Struts 2 日志管理化身神秘魔法师,洞察应用运行乾坤,演绎奇幻篇章!
【8月更文挑战第31天】在软件开发中,了解应用运行状况至关重要。日志管理作为 Struts 2 应用的关键组件,记录着每个动作和决策,如同监控摄像头,帮助我们迅速定位问题、分析性能和使用情况,为优化提供依据。Struts 2 支持多种日志框架(如 Log4j、Logback),便于配置日志级别、格式和输出位置。通过在 Action 类中添加日志记录,我们能在开发过程中获取详细信息,及时发现并解决问题。合理配置日志不仅有助于调试,还能分析用户行为,提升应用性能和稳定性。
55 0
|
3月前
|
测试技术 Java
揭秘Struts 2测试的秘密:如何打造无懈可击的Web应用?
【8月更文挑战第31天】在软件开发中,确保代码质量的关键在于全面测试。对于基于Struts 2框架的应用,结合单元测试与集成测试是一种有效的策略。单元测试聚焦于独立组件的功能验证,如Action类的执行逻辑;而集成测试则关注组件间的交互,确保框架各部分协同工作。使用JUnit进行单元测试,可通过简单示例验证Action类的返回值;利用Struts 2 Testing插件进行集成测试,则可模拟HTTP请求,确保Action方法正确处理请求并返回预期结果。这种结合测试的方法不仅提高了代码质量和可靠性,还保证了系统各部分按需协作。
21 0
|
3月前
|
SQL 存储 数据库