人机融合为什么这么难?

简介: 人工智能中的“人”不是真“人”。自主并不代表智能,或者说自主是智能的必要而非充分条件,只有具备了价值观的自主体,才能说它是智能体。

连接时间与空间的是速度,连接能量与质量的也是速度,连接事实与价值的会是什么呢?连接人与机的又会是什么呢?是不断修正的推理规则?还是不断修正的规则推理呢?

DeepMind的阿尔法go、zero、fold中的阿尔法,alpha,即α,是希腊字母表的第一个字母,有第一个、开端、最初的含意。

如果计算是沟通事实与价值、态势与感知的渠道,那么,算计则是联系主客观、感理性、意形化的虫洞。

image.png

人工智能中的“人”并不是一个“人”

一般而言,对于一个具体的任务态势而言,事物的价值量常常围绕其事实(显著性)量而发生变化,但不是确定性的变化,而是不确定性的弥聚变化,时大时小,弥散聚合富有弹性,这与我们通常生活中的价值观相似,不断同化顺应、修正平衡。就像费曼所说:事物在微小尺度上的行为完全不像大尺度上的行为。反之,也相似。有时,变化态势中事物的事实量与价值量不是线性变化的,而是像电影里的镜头一样按照自己的逻辑线索改变,不需要日常的中间时空,既可以无中生有,也可以有中生无。某些特定的态势下事物的事实性与价值性即便相距的再远,也能瞬间互相识别,形成自动模式匹配效应。

人工智能中的“人”不是真“人”。自主并不代表智能,或者说自主是智能的必要而非充分条件,只有具备了价值观的自主体,才能说它是智能体。所以说,事实性自主仅是自动化,价值性自主才是智能化,洞察性自主更是智慧化。真的人常常是没有主体性或本体性的,会随着系统和体系而变化。

人机互荡,机器处理线性,人处理非线性。

一部好的作品,是众人创造的结果,比如《平凡的世界》是路遥写的,是李野墨说的,是演员演的,是无数读者/听众想的,是各种媒介传的……;一个好的智能产品或系统,也是众人创造的结果,比如“阿尔法狗”或“阿尔法元”是Deep Mind开发的,是前人棋谱训练出的,是群众想象出的,是各种媒介传的……

有人说:“感性是复杂的模式模糊计算,是最节能与最高效的平衡”。其实不然,感性智能不是计算,而是加了算计的计算计机制,这才是复杂的模式模糊计算计,是最节能与最高效的平衡。计算计机制时常在不一定了解发生事情的确切过程时能给出一个满意的答案,尽管这些过程是不透明的,而且很难清晰的证明可以做什么,不可以做什么。对感性智能而言,规则是可以被修正的,如果它产生了我们不愿意接受的推理;推理可以被拒斥的,如果它违反了我们不愿意修改的规则。事实转换为价值的过程就是在规则与被接受的推理之间进行相互调整的一种微妙的过程;最终确定的价值就存在于他我或自我达成的协议中。也许,真的不能用人工智能的基本规律去解释人类智能的规律。

连接时间与空间的是速度,连接能量与质量的也是速度,那么连接事实与价值的会是什么呢?即用什么指标来衡量值不值得做某件事的问题。这也许是连接真实与虚拟、现实与虚构、结构与功能等平行世界的问题吧!

人机融合的矛盾在于:人发散,机收敛,人辩证,机规则,一弥一聚,一动一静。再有我们面对的常常不是一个问题,而是交织在一起的一群不同问题!所以运用单纯的数理逻辑方法很难实现解决的目的,所以还需要同时使用形式逻辑、辩证逻辑,甚至非逻辑手段。

机器学习甚至人工智能的不确定性和不可解释性主要缘于人们发现发明的归纳、演绎、类比等推理机制确实有可能导致某种不完备性、不稳定性和相悖矛盾性,而且随着计算规模的不断扩大,这些不确定性和不可解释性越大。而人类的反事实推理、反价值推理可以从虚拟假设角度提前预防或预警这些形式化的自然缺陷。把人机融合体当做一个认知主体,更有利于解决复杂性问题,只是需要解决在不同任务下的如何融合的问题。另外,一人一机的单一融合与多人多机的群体融合从根本机理上也会很不相同,正可谓:三个臭皮匠顶个诸葛亮。

命题逻辑的关键点在于它是二进制的。每个句子(也称为命题)假定为真和假。没有中间答案,也不接受不确定性和概率,只允许两个“真值”,即真和假。热力学比逻辑更接近大脑的功能。逻辑学被统计学取代,单一单元被集合取代,确定性纯度被概率噪音取代。


转载链接:http://www.qianjia.com/html/2020-12/07_373219.html
本文转自千家网文章,本文一切观点和机器智能技术圈子无关。
在线免费体验百种AI能力:【点此跳转】
机器智能技术结尾二维码.png

目录
相关文章
|
4月前
|
机器学习/深度学习 人工智能 搜索推荐
AI与未来医疗:革命性的技术融合
本文探讨了人工智能(AI)在未来医疗领域的应用及其潜在影响。通过分析当前的技术进步和具体案例,如AI辅助诊断、个性化治疗方案及医疗机器人等,展示了AI如何提高医疗服务的效率和准确性,降低医疗成本,并增强患者的治疗体验。同时,文章也讨论了AI在医疗中面临的伦理和隐私问题,以及解决这些问题的可能途径。最后,本文对AI在未来医疗中的前景进行了展望,指出其将继续深刻改变医疗保健行业,为患者和医疗专业人员带来更多福祉。
|
12天前
|
运维 监控 算法
解锁三维视频融合:重塑视觉体验与行业应用新格局
三维视频融合,解锁视觉新境界!实时视频嵌入三维空间,城市监控如临现场,工业运维精准高效,教育体验仿若亲为。跨越行业壁垒,革新视觉呈现!
|
1月前
|
存储 机器学习/深度学习 人工智能
《C++与生物医学的智能融合:医疗变革新引擎》
在科技迅速发展的背景下,C++与生物医学的结合正成为创新前沿。C++以其高效性和稳定性,在处理大规模生物医学数据、辅助疾病诊断与治疗等方面展现出巨大潜力。面对生物医学数据的复杂性与挑战,C++不仅提高了数据处理的效率,还在疾病诊断、基因分析及药物研发中发挥了重要作用。尽管存在更新快、数据标准不一等挑战,但随着技术进步和跨学科合作加深,C++与生物医学的融合应用前景广阔,有望为医疗健康领域带来革命性变化。
54 11
|
2月前
|
机器学习/深度学习 人工智能 物联网
5G与AI融合:智能网络的新纪元
【10月更文挑战第25天】
83 3
|
2月前
|
机器学习/深度学习 人工智能 算法
AI与未来教育:一场革命性融合
在这个信息爆炸的时代,人工智能(AI)正逐步渗透到我们生活的每一个角落,教育领域也不例外。本文旨在探讨AI技术如何革新传统教育模式,以及这一变革可能带来的深远影响。通过分析AI在个性化学习、智能辅导系统、教育资源优化分配等方面的应用案例,揭示其对未来教育生态的重塑潜力。同时,文章也将讨论伴随技术进步而来的挑战,如数据隐私保护、教师角色转变等问题,并提出相应的解决思路和建议,为构建更加公平、高效、人性化的教育体系提供参考。
|
3月前
|
机器学习/深度学习 人工智能 人机交互
智能语音识别:重塑人机交互的新纪元###
【10月更文挑战第18天】 想象一下,轻声细语间,机器便能懂你心意,这是科幻电影的桥段,也是智能语音识别技术为我们描绘的现实蓝图。本文将带您穿越语音识别的奇妙世界,从它的历史长廊漫步至前沿技术的应用场域,一探究竟这项技术如何在教育、医疗、家居等领域大放异彩,同时审视其面临的挑战与未来可能的突破方向。这不仅是一场技术的旅行,更是对未来生活的一次憧憬。 ###
33 1
|
4月前
|
安全 搜索推荐 vr&ar
脑机接口:人类认知与技术的深度融合
【9月更文挑战第13天】脑机接口(BMI)技术正快速发展,成为连接人类认知与高科技领域的桥梁。本文从定义、原理、应用及挑战等方面全面探讨了这一前沿技术。脑机接口通过测量大脑活动,转化为外部设备的控制信号,已在疾病治疗、运动功能恢复、认知改善及AR/VR等领域展现巨大潜力。然而,技术难度、伦理安全及成本问题仍需克服。未来,随着技术进步,脑机接口有望更广泛地应用于日常生活,引领科技新方向。
|
4月前
|
搜索推荐 安全 物联网
智能家居技术的未来:集成化与个性化的融合
本文将深入探讨智能家居技术的发展趋势,特别是集成化和个性化如何成为未来智能家居系统设计的核心。文章将分析当前智能家居技术面临的挑战,并展示通过集成化提高系统效率、降低成本的方法。同时,讨论个性化服务在提升用户体验方面的重要性,以及如何通过数据驱动和人工智能技术实现这一目标。最后,文章将预测未来智能家居技术的发展方向,包括物联网设备的进一步整合、安全性的提升,以及智能家居技术在健康监测和环境可持续性方面的应用潜力。
123 1
|
5月前
|
机器学习/深度学习 人工智能 物联网
智能家居系统的未来:技术融合与生活革新
【8月更文挑战第22天】本文探讨了智能家居系统的未来发展趋势,着重分析了物联网、人工智能、大数据等技术的融合如何推动智能家居的革新。文章从智能家居的定义和发展历程出发,逐步深入到技术融合的具体应用,以及这些技术如何影响我们的日常生活。通过对未来可能的生活场景进行描绘,文章旨在启发读者思考技术与日常生活的深刻联系,并展望智能家居系统带给我们的便利和挑战。
|
5月前
|
人工智能 搜索推荐 调度
AI与教育如何深度融合?
【8月更文挑战第4天】AI与教育如何深度融合?
104 1