如何做压测?

本文涉及的产品
性能测试 PTS,5000VUM额度
简介: 压测的一般流程和方法是什么?需要关注哪些数据指标?如何推算后端需要支持的qps?本文分享总结压测过程中需要注意的问题,希望对同学们有所启发,欢迎讨论~

image.png

作者 | 冬恒
来源 | 阿里技术公众号

一 压测目标

在开始做压测计划之前,一定要先明确压测的目标是什么,虽然最终的目标肯定都是优化系统的性能,但是不同的出发点,可能需要采取不同的方法。

一般来说,可能有以下一些目的:

image.png

1 挖掘系统瓶颈点,优化系统性能

尤其对新系统上线,缺乏性能基线数据,此时压测一般没有明确的qps/rt等指标,而是通过不断施压,不断逼近系统的极限,从而暴露问题,修复问题。

2 建立性能基线

主要是为了收集系统当前的最大性能指标,一般会根据业务特点,先确定对rt和错误率的容忍度,然后通过压测推算出能够支持的最大qps, 并发量等。

同时可以结合性能指标和监控数据,来建立合理的预警机制,设立系统水位报警项,限流阈值,弹性策略等。

量化系统能力/SLA等 (比如在竞标中引用)。

3 性能回归

对于已上线系统,或者性能需求明确的系统,可以根据线上实际的运行情况,确定系统需要支撑的qps/rt, 然后在涉及性能影响前做回归校验,确保性能满足预期。

4 系统稳定性

更侧重在一定压力的情况下,系统是否能长时间稳定持续的提供SLA保障。

一般可以考虑将压力设定到业务峰值的80%,持续施压。

5 网络/线路延迟稳定性等

在一些特殊的业务场合,对延迟的容忍度极小,比如DNS解析,CDN服务,多人实时在线游戏,高频交易等等,需要网络质量,尤其是不同线路(电信/联通/教育网/...)间的差异。

二 压测对象

明确了压测目标后 ,就是确定要压什么,来实现目标。

一般来说,压测对象可以这么分:

image.png

  • 后端
    • 单api
    • 单业务逻辑场景
  • 前端
    • 单request
    • 单操作
    • 单页
    • 整体页面平均情况

三 压测数据

压测过程中,一般主要关注一下数据指标:

1 starter/client

image.png

最重要的三个指标:

  • qps
  • rt
  • 成功率

其他的:

  • 页面平均响应时间 (重要)。
  • 并发量(其实没那么重要,主要还是qps)。
  • 最大用户同时在线数 (用户登录系统,一般不需要额外压测,除非业务场景特殊)。
  • 网络质量(延迟,波动等,不展开)。

2 server

主要是监控数据:

image.png

  • cpu usage
  • load
  • mem
  • jvm/fullGC
  • 连接数(netstat)
  • disk io (iostat / iotop)

四 压测结果分析

一般是随着压力的增加(并发请求的增加)探究qps/rt/成功率三者的关系,从而找到系统的平衡点,如果能结合服务端的监控数据,就更好。

image.png
image.png
image.png

五 压测工具

1 jmeter

concurrent Thread Group

image.png

java sampler

image.png
image.png

composite chart

可以将多个chart组合到一个chart中,并且坐标系会自动伸缩,方便在一个图中展示结果。

image.png

六 性能指标推算方法

以上都是一些系统向的指标数据,其实对用户来说是不感知,或者说也是没有意义的。那什么样的数字是有意义的呢?举个例子:

如果你提供的是一个在线的网页服务,那用户可能关心的是,你的系统在保证不察觉卡顿的情况下(系统的SLA, 实际可能容忍存在偶发的页面错误重试)能承受多少人并发使用。

如果你提供的是个结算系统,那用户可能关心的是,在保证交易有效性的情况下(不能出错,但是可以偶发超时重试,同样是系统的SLA),每秒可以处理多少笔订单。

举例分析:

1 基本算法

image.png

此处pv表意不清,实为后端日志统计的后端api的调用次数,如果有前端统计的一般意义上的pv(page visit),基本原理相同,可以简单换算一下,pv * x-ratio = 后端调用次数。

  1. 获取现场每日asapi PV/UV的均值/峰值。
  2. 取Max(PV峰值*0.8,每日PV均值)作为目标PV', PV'时段的UV值作为实际并发用户参考值N', 计算PV'/perMinute/N'作为每分钟用户操作触发api次数O'。
  3. 根据以下规则换算成后端需要支持的qps:
  • 3.1 模型假设:2/8原则——每日有80%的PV发生在20%的工作时间内(ratio=0.8)。
  • 3.2 假设页面单个请求映射到后端api请求比例为1:10,假设一天working hour为8小时 (e=10)。
  • 3.3 假设一般用户,高峰期每分钟操作页面10次 (o=10)。
  • 3.4 根据现场日PV计算支持N'用户并发操作需要的qps:PV' * ratio/(working hour∗60∗60∗(1−ratio) )= qps
  • 3.5 根据现场峰值小时级PV计算支持N'用户并发操作需要的qps:PV' * ratio/(1∗60∗60∗(1−ratio) ) = qps
  1. 根据压测qps推算能够支持的最大用户同时使用数:
  • 4.1 同样基于上述公式,根据上述假设,1分钟内,每个用户操作10次,每次前端操作对应后端10个api:
    • 1分钟PV = N 10 10
    • N 10 10 / 60 = qps ==> N = qps * 0.6
  • 4.2 如果按照小时为单位推算,1个小时内,每个用户操作页面100次,每次前端操作对应后端10个api:
    • 60分钟PV = N 100 10
    • N 100 10 / 6060 = qps ==> N = qps 3.6

2 正向推演

如果现场环境数据表明,高峰期9:00~10:00有50人登录过系统,pv累计10000,那么根据(3.1),系统整体qps >= 11+ 才能维持当前用户量正常使用。

3 反向推演

如果家里环境压测结果表明,随机API调用qps=30, 保持上述假设,参照(4.2),即可支撑18人高峰期同时操作。

4 不严谨的地方

上述算法针对随机API按照1:1计算,实际上调用肯定是不均匀的,可以根据现场的数据统计下api的调用分布,压测是模拟相同的调用分布尽量贴近实际。

另外用户每分钟操作页面次数,和每次前端请求对应后端api的膨胀比都是预估出来的,虽然可以根据模型做近似,但是不如直接根据现场数据计算出来准确。

七 其他考量

  • 链路跟踪能力,分析瓶颈点
    • api log
    • eagleye-traceId

image.png

  • 缓存对数据库的影响
    • 是否需要压到db层,要考虑压测场景。
    • 是否需要创造海量的随机压测数据 (比如针对单用户的缓存优化场景,单一用户的性能不能用来推送多用户并发的场景)。
  • 同步接口异步接口的压测 (staragent)
    • 主要考验后台任务处理能力(异步任务提交即时返回了)。
  • 系统不同层次的限流设置对API的影响
    • 比如有业务层的限流如Sentinel, Nginx层的限流如X5, 或者其他基于LVS的限流等。
  • 消息通信,尤其是广播消息。
  • 数据库,尤其是写一致性。
  • 复杂场景的长链路调用。
  • Nginx/Tomcat的配置对请求的影响。
  • 容易忽视的对象序列化/反序列化对性能的影响。
  • 热点数据。
相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
相关文章
|
7月前
|
负载均衡 NoSQL 关系型数据库
性能基础之全链路压测知识整理
【2月更文挑战第16天】性能基础之全链路压测知识整理
319 11
|
7月前
|
监控 Dubbo 测试技术
如何做好一次服务接口压测?
如何做好一次服务接口压测?
104 0
|
缓存 监控 NoSQL
怎么做服务压测?
怎么做服务压测?
217 0
|
负载均衡 测试技术 应用服务中间件
|
SQL 缓存 运维
全链路压测(10):测试要做的准备工作
功能验证环境即用来验证技术组件本身的功能正确性和接入性能损耗的环境,有独立的随时可用的环境最好。如果考虑到成本,也可以用线下性能环境来进行验证。
全链路压测(10):测试要做的准备工作
|
存储 监控 数据可视化
再谈全链路压测
以我现在所在的银行业务系统来说,目前的现状大概有这些:业务逻辑太复杂、系统庞大、子系统较多、系统间解耦程度较低、调用链路较长、核心系统环环相扣。
再谈全链路压测
|
监控 NoSQL 容灾
换个角度,聊聊全链路压测
很多同学说起全链路压测,都喜欢深究它的技术细节,这没错。但全链路压测想要成功的在生产环境实施,更多的是考验组织协调能力的一个项目。至于技术层面,能说的有很多,这次我们先聊聊比较核心的一些技术点。
|
缓存 运维 监控
聊聊传统压测和全链路压测的区别
随着互联网行业不断发展,系统架构越发复杂,业务场景越发多样化,对性能测试的要求也越来越高。传统压测方式已经无法满足业务和技术的发展需要,全链路压测,就是在这样的背景下应运而生的。作为性能测试领域新阶段的最佳实践,全链路压测在更多公司被探索和应用的过程中,也遇到了种种挑战。
聊聊传统压测和全链路压测的区别
|
缓存 监控 前端开发
全链路压测第一次实践
电商业务本身比较复杂,且当前阶段我们微服务架构下,各个服务间依赖高,调用关系复杂,且没有较为清晰的链路梳理,理论上来说,只有一部分系统才是核心链路。所以,面临的第一个挑战,就是从错综复杂的系统中梳理出核心业务链路。
全链路压测第一次实践
|
消息中间件 NoSQL 安全
全链路压测探索实践之路
全链路压测是一个很复杂的工程,其中涉及到多个服务。对整个业务系统进行梳理,确认流量传递的上下游和范围,是首先要做的事情。