HBase助力点触科技构建实时计算和数据仓库解决方案

简介: 点触科技选择阿里云HBase SQL服务(Phoenix)+ Spark服务构建实时计算和数据仓库解决方案。

image.png

客户简介

厦门点触科技股份有限公司,新三板挂牌企业(股票代码:870702),成立于2013年,是一家以历史养成类游戏研发与发行为主,专业从事手机游戏的策划、研发制作、商业化运营的创新型发展公司。目前已经成功研发出《叫我万岁爷》、《我在大清当皇帝》、《Game of Sultan》、《皇上吉祥》等多款历史题材类游戏并深受玩家喜爱。覆盖了全国及港台、东南亚等部分海外市场。

业务挑战

  • 某些恶意用户利用信用卡或者别的漏洞刷单(代充),系统需要实时查询多种日志(比如登入日志,充值日志等)从而识别并拦截游戏代充订单,才能避免损失代充订单的钱。
  • 随着业务快速发展,用户行为日志快速增长,需要从海量的点击流日志和激活日志中挖掘数据的价值,比如广告转化率、激活率,每安装用户成本等等。
  • 原来使用Greenplum做实时计算和统计分析。但是Greenplum存在以下缺陷,难以应对业务的快速发展:
  1. Greenplum架构难以应对日益复杂的计算任务;
  2. Greenplum的单表分区数目有限制,同时多级分区支持不够友好,不适用单表数据量比较大且需要永久保存的日志,如果单个分区表数据量比较大的时候查询性能无法满足业务性能需求;
  3. Greenplum扩容时由于数据要重分布会比较慢;
  4. Greenplum不适合处理非结构化的数据。

解决方案

选择阿里云HBase SQL服务(Phoenix)+ Spark服务构建实时计算和数据仓库解决方案。

  • HBase SQL提供在线查询能力、Spark提供流式处理、复杂分析等能力来满足业务需求;
  • 梳理业务数据,对数据进行分层存储在HBase SQL(Phoenix)+Spark中:
  • 操作数据层:手游客户端、用户中心、广告监测、游戏服务器等产生的原始日志;
  • 数据明细层:【操作数据层】使用Spark Streaming等进行数据去噪、去重、字段规范后写入HBase SQL服务,也可以直接使用JDBC写入数据;
  • 数据汇总层:【数据明细层】的数据可以定期(按天或者按小时)ETL(比如关联维表、过滤、聚合)后写入到【数据汇总层】。数据汇总层的数据供后续的复杂分析;
  • 应用数据层:直接对外提供数据查询服务(基于HBase SQL服务)支撑上层大数据风控、广告推荐、海量数据精细化运营;【数据汇总层】的数据经过处理后会把结果数据写入到HBase SQL中对外提供查询服务。

点触1.png

客户价值

  • 毫秒级识别拦截代充订单。HBase SQL(Phoenix) 高并发实时读写,TPS可达百万量级,并发十万量级,毫秒级简单查询;
  • Spark优秀的计算能力。同样作业Spark基于列式存储Parquet的分析在数据量大的情况下比Greenplum集群有10倍的性能提升。支撑了广告转化率、激活率,安装用户成本,数据驱动精细化运营等业务计算需求;
  • 一站式解决方案。Spark服务原生支持通过SQL读取HBase SQL(Phoenix)数据能力,具备列裁剪、谓词下推、分区裁剪等优化;高效地把HBase SQL在线库的数据ETL后归档到Spark数据仓库;
  • 聚焦业务。全托管的Spark服务保证了作业运行的稳定性,释放运维人力,同时数据工作台降低了Spark作业管理成本。
目录
相关文章
消息中间件 存储 传感器
237 0
|
7月前
|
SQL 分布式计算 大数据
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
本文深入介绍 Hive 与大数据融合构建强大数据仓库的实战指南。涵盖 Hive 简介、优势、安装配置、数据处理、性能优化及安全管理等内容,并通过互联网广告和物流行业案例分析,展示其实际应用。具有专业性、可操作性和参考价值。
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
|
9月前
|
SQL 存储 API
Flink Materialized Table:构建流批一体 ETL
Flink Materialized Table:构建流批一体 ETL
185 3
|
9月前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
640 2
|
10月前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
1246 1
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
|
10月前
|
SQL 存储 API
Flink Materialized Table:构建流批一体 ETL
本文整理自阿里云智能集团 Apache Flink Committer 刘大龙老师在2024FFA流批一体论坛的分享,涵盖三部分内容:数据工程师用户故事、Materialized Table 构建流批一体 ETL 及 Demo。文章通过案例分析传统 Lambda 架构的挑战,介绍了 Materialized Table 如何简化流批处理,提供统一 API 和声明式 ETL,实现高效的数据处理和维护。最后展示了基于 Flink 和 Paimon 的实际演示,帮助用户更好地理解和应用这一技术。
848 7
Flink Materialized Table:构建流批一体 ETL
|
11月前
|
SQL 监控 关系型数据库
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
本文整理自用友畅捷通数据架构师王龙强在FFA2024上的分享,介绍了公司在Flink上构建实时数仓的经验。内容涵盖业务背景、数仓建设、当前挑战、最佳实践和未来展望。随着数据量增长,公司面临数据库性能瓶颈及实时数据处理需求,通过引入Flink技术逐步解决了数据同步、链路稳定性和表结构差异等问题,并计划在未来进一步优化链路稳定性、探索湖仓一体架构以及结合AI技术推进数据资源高效利用。
811 25
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
|
12月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
存储 分布式计算 分布式数据库
深入理解Apache HBase:构建大数据时代的基石
在大数据时代,数据的存储和管理成为了企业面临的一大挑战。随着数据量的急剧增长和数据结构的多样化,传统的关系型数据库(如RDBMS)逐渐显现出局限性。
1741 12
|
消息中间件 监控 数据挖掘
基于RabbitMQ与Apache Flink构建实时分析系统
【8月更文第28天】本文将介绍如何利用RabbitMQ作为数据源,结合Apache Flink进行实时数据分析。我们将构建一个简单的实时分析系统,该系统能够接收来自不同来源的数据,对数据进行实时处理,并将结果输出到另一个队列或存储系统中。
1107 2

热门文章

最新文章