阿里云推出业内首个云原生企业级数据湖解决方案:将在今年双11大规模应用

简介: 数据湖高峰论坛在京召开,阿里云宣布推出业内首个云原生企业级数据湖解决方案,提供EB级数据存储、分析能力,可一站式实现湖存储、湖加速、湖管理、湖计算,帮助企业对数据深入挖掘与分析,洞察其中蕴含的价值,更适合于人工智能、物联网、自动驾驶等拥有海量数据场景的新兴行业

10月23日,数据湖高峰论坛在京召开,阿里云宣布推出业内首个云原生企业级数据湖解决方案,提供EB级数据存储、分析能力,可一站式实现湖存储、湖加速、湖管理、湖计算,帮助企业对数据深入挖掘与分析,洞察其中蕴含的价值,更适合于人工智能、物联网、自动驾驶等拥有海量数据场景的新兴行业。

阿里云智能存储产品资深总监陈起鲲表示,云原生企业级数据湖解决方案将首次被大规模应用于今年双十一,支撑阿里巴巴经济体及百万客户全面上云,帮助其最大程度地释放数据价值。

1.jpg

据悉,阿里云云原生企业级数据湖解决方案采用了存储计算分离架构,基于阿里云对象存储OSS构建,并与阿里云数据湖分析Data Lake Analytics(DLA)、数据湖构建Data Lake Formation(DLF)、E-MapReduce(EMR)等计算引擎无缝对接,兼容丰富的开源计算引擎生态,可满足大数据系统统一存储、海量数据规模,更可靠、更灵活、更安全。

数据湖不是一个新的的概念,早在十年前的纽约Hadoop 大会上,就有人提出并定义:数据湖,就是把你以前在磁带上拥有的东西倒入到数据湖,然后开始探索这些数据。随着大数据、云存储、云计算日渐成熟,今天的数据湖已经从概念走向成熟,在各类企业中大规模落地。

与传统大数据解决方案不同的是,云原生数据湖基于下一代数据湖架构,可直接接入业务生产中心,如业务系统中的原始数据、日志数据等。数据可通过互联网直接入湖,无需经过中间处理,提升业务效率100%,驱动企业IT系统实现从成本中心转型为创新中心。

以某国内某知名社交游戏公司为例,基于阿里云数据湖方案,通过日志服务sls,将全球数据实时投递到OSS统一存储。利用OSS海量弹性能力冷热分层,通过EMR和DLA搭建存算分离的大数据架构,实现千万日活的玩家链路智能推荐实时分析,实时渠道统计,精细化运营,帮助公司提升了30%的用户留存率。目前,已有几千家企业在阿里云上构建云数据湖。

2.jpg

阿里巴巴集团副总裁、阿里云智能数据库产品事业部负责人李飞飞认为:“数据库与大数据一体化正在加速数据湖规模化落地。云原生数据湖让企业无需管理计算资源,更灵活、更敏捷、更高效、更易用地挖掘数据价值,赋能企业快速叠代、快速创新,让数据洞察成为企业核心竞争力。

3.jpg

阿里巴巴集团副总裁、阿里云智能计算平台事业部负责人贾扬清表示,基于阿里云数据湖OSS和数据仓库MaxCompute可以快速实现企业想要的湖仓一体方案,无须数据传输,一份数据智能流动,跨多平台计算,同时享受数据湖的灵活性和数据仓库的成长性,确保企业数据业务的连续性和时效性。

“数字经济时代,如果大数据是石油、算力是发动机,那么云原生企业级数据湖就是能将二者紧密结合的解决方案。不久的将来,数据湖将成为企业应用创新标配,帮助企业全面实现智慧化、数智化转型。”陈起鲲说。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
7月前
|
Kubernetes Cloud Native 安全
云原生机密计算新范式 PeerPods技术方案在阿里云上的落地和实践
PeerPods 技术价值已在阿里云实际场景中深度落地。
|
5月前
|
消息中间件 人工智能 监控
【云故事探索 | NO.15】:阿里云云原生加速鸣鸣很忙数字化
【云故事探索 | NO.15】:阿里云云原生加速鸣鸣很忙数字化
|
6月前
|
消息中间件 人工智能 监控
【云故事探索】NO.15:阿里云云原生加速鸣鸣很忙数字化
鸣鸣很忙集团作为中国最大休闲食品饮料连锁零售商,通过数字化与云原生技术实现快速扩张,4年完成其他企业10年的数字化进程。其采用阿里云全栈云原生方案,实现弹性扩容、智能补货、模块化开店等创新实践,支撑日均超430万交易数据稳定运行。未来将深化AI应用,推动供应链智能化与业务全面升级。
|
SQL 分布式计算 数据处理
Uber基于Apache Hudi增量 ETL 构建大规模数据湖
Uber基于Apache Hudi增量 ETL 构建大规模数据湖
439 2
|
存储 SQL 分布式计算
基于Apache Hudi + MinIO 构建流式数据湖
基于Apache Hudi + MinIO 构建流式数据湖
634 1
|
存储 人工智能 数据库
企业级数据湖的构建之道(一)
企业级数据湖的构建之道(一)
344 1
|
11月前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
存储 SQL 大数据
从数据存储到分析:构建高效开源数据湖仓解决方案
今年开源大数据迈向湖仓一体(Lake House)时代,重点介绍Open Lake解决方案。该方案基于云原生架构,兼容开源生态,提供开箱即用的数据湖仓产品。其核心优势在于统一数据管理和存储,支持实时与批处理分析,打破多计算产品的数据壁垒。通过阿里云的Data Lake Formation和Apache Paimon等技术,用户可高效搭建、管理并分析大规模数据,实现BI和AI融合,满足多样化数据分析需求。
|
数据采集 存储 分布式计算
构建智能数据湖:DataWorks助力企业实现数据驱动转型
【8月更文第25天】本文将详细介绍如何利用阿里巴巴云的DataWorks平台构建一个智能、灵活、可扩展的数据湖存储体系,以帮助企业实现数据驱动的业务转型。我们将通过具体的案例和技术实践来展示DataWorks如何集成各种数据源,并通过数据湖进行高级分析和挖掘,最终基于数据洞察驱动业务增长和创新。
681 53
|
存储 搜索推荐 数据建模
阿里巴巴大数据实践之数据建模:构建企业级数据湖
阿里巴巴通过构建高效的数据湖和实施先进的数据建模策略,实现了数据驱动的业务增长。这些实践不仅提升了内部运营效率,也为客户提供了更好的服务体验。随着数据量的不断增长和技术的不断创新,阿里巴巴将持续优化其数据建模方法,以适应未来的变化和发展。

热门文章

最新文章