如何生成 Flink 作业的交互式火焰图?

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink 是目前最流行的大数据及流式计算框架之一,用户可以使用 Java/Scala/Python 的 DataStream 接口或者标准 SQL 语言来快速实现一个分布式高可用的流式应用,通过内部的 Java JIT、off-heap 内存管理等技术优化性能,并且有完整的 Source、Sink、WebUI、Metrics 等功能集成,让 Flink 几乎成为了流式计算的事实标准。

作者:田志声

前言

Flink 是目前最流行的大数据及流式计算框架之一,用户可以使用 Java/Scala/Python 的 DataStream 接口或者标准 SQL 语言来快速实现一个分布式高可用的流式应用,通过内部的 Java JIT、off-heap 内存管理等技术优化性能,并且有完整的 Source、Sink、WebUI、Metrics 等功能集成,让 Flink 几乎成为了流式计算的事实标准。

但是当处理海量数据的时候,很容易出现各种异常和性能瓶颈,这时我们需要优化系统性能时,常常需要分析程序运行行为和性能瓶颈。Profiling 技术是一种在应用运行时收集程序相关信息的动态分析手段,常用的 JVM Profiler 可以从多个方面对程序进行动态分析,如 CPU、Memory、Thread、Classes、GC 等,其中 CPU Profiling 的应用最为广泛。CPU Profiling 经常被用于分析代码的执行热点,如“哪个方法占用 CPU 的执行时间最长”、“每个方法占用 CPU 的比例是多少”等等,通过 CPU Profiling 得到上述相关信息后,研发人员就可以轻松针对热点瓶颈进行分析和性能优化,进而突破性能瓶颈,大幅提升系统的吞吐量。

本文介绍我们在做性能优化常用的火焰图以及为如何集成火焰图到通用的 Flink 作业中。

火焰图介绍

火焰图是《性能之巅》作者以及 DTrace 等一系列 Linux 系统优化工具作者 Brendan Gregg 大神的作品之一,可以非常清晰地展示应用程序的函数调用栈以及函数调用时间占比,基本原理是通过各种 agent 在程序运行时采样并输出日志,使用 FlameGraph 工具把日志提取出来输出可在浏览器交互式查看的 SVG图片。

Uber 开源了 jvm-profiler 项目,介绍如何为 Spark 应用和 Java 应用添加火焰图支持,但是目前 Flink 社区和 jvm-profiler 官网都还没有相关的使用教程。

1.jpg

实际上基于 JVM 的程序都可以使用这个工具,本文将基于 jvm-profiler 来介绍如何生成 Flink 作业的火焰图。

下载和编译 jvm-profiler

git clone git clone https://github.com/uber-common/jvm-profiler.git

mvn clean install -DskipTests=true -Dcheckstyle.skip -Dfast -T 8C

编译好了之后,将项目 target 目录下的 jvm-profiler-1.0.0.jar 复制一份到 flink 的 lib 目录下面。

cp target/jvm-profiler-1.0.0.jar /usr/local/flink-1.11.1/lib

下载 FlameGraph

由于 jvm-profiler 支持生成火焰图需要的日志文件,将日志转化成交互式 SVG 图片还是使用 Brendan Gregg 的FlameGraph 工具。

git clone https://github.com/brendangregg/FlameGraph.git

下载项目源码即可,后面会使用 flamegraph.pl 工具来生成图片文件。

配置 Flink

对于 Flink 应用,我们只需要在 TaskManager 中注入打点的 Java agent 即可,这里测试,我就使用本地 standalone 模式,修改 Flink conf 目录下的 flink-conf.yaml 文件,添加一下如下配置:

env.java.opts.taskmanager: "-javaagent:/usr/local/flink-1.11.1/lib/jvm-profiler-1.0.0.jar=sampleInterval=50"

目前最小的采样间隔就是 50 毫秒,然后启动集群和运行一个 Flink 作业:

./bin/start-cluster.sh


//运行一个作业
./bin/flink run ./examples/streaming/StateMachineExample.jar

运行之后可以看到 TaskManager 的 stdout 里面打印如下:

2.jpg

因为已经注入 Java agent,因此在标准输出中会定期添加火焰图所需要的打点数据,然后使用下面的命令提取相关日志,并且使用 jvm-profiler 和 FlameGraph 提供的工具来生成 SVG 图片文件。

//1、提取 stdout 文件中的相关日志

cat log/flink-zhisheng-taskexecutor-0-zhisheng.out | grep "ConsoleOutputReporter - Stacktrace:" | awk '{print substr($0,37)}' > stacktrace.json


//2、在 jvm-profiler 目录下执行下面命令

python ./stackcollapse.py -i /usr/local/flink-1.11.1/stacktrace.json > stacktrace.folded


//3、在 FlameGraph 目录下执行下面命令生成 SVG 图片

./flamegraph.pl /Users/zhisheng/Documents/github/jvm-profiler/stacktrace.folded > stacktrace.svg

然后用浏览器打开刚才生成的 SVG 图片就可以看到火焰图信息。

3.jpg

总结

本文主要目的在于教大家如何利用 jvm-profiler 去生成 Flink 作业的运行火焰图,这样可以在遇到性能瓶颈问题的时候会很方便大家去定位问题,关于如何去读懂生成的火焰图,后面可以再分享系列文章。

参考资料

  • JVM CPU Profiler技术原理及源码深度解析
  • jvm-profile

更多 Flink 技术交流可加入 Apache Flink 社区钉钉交流群:

最新钉群二维码.jpeg

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
3月前
|
消息中间件 分布式计算 大数据
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
169 0
|
3月前
|
消息中间件 分布式计算 大数据
大数据-128 - Flink 并行度设置 细节详解 全局、作业、算子、Slot
大数据-128 - Flink 并行度设置 细节详解 全局、作业、算子、Slot
171 0
|
5月前
|
Oracle 关系型数据库 MySQL
实时计算 Flink版产品使用问题之如何从savepoint重新启动作业
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
机器学习/深度学习 人工智能 运维
美团 Flink 大作业部署问题之Flink在生态技术演进上有什么主要方向
美团 Flink 大作业部署问题之Flink在生态技术演进上有什么主要方向
|
5月前
|
监控 Serverless Apache
美团 Flink 大作业部署问题之如何体现Flink在业界的影响力
美团 Flink 大作业部署问题之如何体现Flink在业界的影响力
|
5月前
|
监控 Serverless 数据库
美团 Flink 大作业部署问题之端云联调并将流量恢复到云端实例如何结束
美团 Flink 大作业部署问题之端云联调并将流量恢复到云端实例如何结束
|
5月前
|
监控 Java Serverless
美团 Flink 大作业部署问题之想在Serverless平台上实时查看Spring Boot应用的日志要怎么操作
美团 Flink 大作业部署问题之想在Serverless平台上实时查看Spring Boot应用的日志要怎么操作
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1385 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
171 56

相关产品

  • 实时计算 Flink版