视觉AI五天训练营 Day02 身份证识别系统搭建

简介: 视觉AI五天训练营 Day02 身份证识别系统搭建

身份证识别系统搭建——借助阿里云OCR接口

基于阿里云的接口实现身份证识别系统还是比较简单的,基本不需要编写代码;当然如果你决定要开发出一个完美的前后端,当我没有说。时间太赶,我决定成功实现调用接口即为完成该实验,具体的前端美化以及后端的逻辑处理还是等下次有时间再完善吧,本次我使用python来实现调用身份证识别OCR接口,废话少说,开干!

第一步,阿里云控制台获取accesskey

image.png

不管你调用任何的能力,基本都需要获取accesskey。

第二步,去阿里云身份证识别接口查看文档

  • 查看接口的调用方法以及所需参数
    image.png
  • 左侧打开python的sdk文档
    image.png
  • 安装Python SDK核心库,具体代码看文档
  • 开通上海地区的OSS,创建一个bucket并上传一张身份证照片,怎么开通看文档

编写代码(CV高级工程师上线)

#!/usr/bin/env python
#coding=utf-8

from aliyunsdkcore.client import AcsClient
from aliyunsdkcore.acs_exception.exceptions import ClientException
from aliyunsdkcore.acs_exception.exceptions import ServerException
from aliyunsdkocr.request.v20191230.RecognizeIdentityCardRequest import RecognizeIdentityCardRequest

client = AcsClient('<accessKeyId>', '<accessSecret>', 'cn-shanghai')

request = RecognizeIdentityCardRequest()
request.set_accept_format('json')

request.set_ImageURL("上海区OSS图片地址")
request.set_Side("face")

response = client.do_action_with_exception(request)
# python2:  print(response) 
print(str(response, encoding='utf-8'))

实际效果

填写accesskeyid和accesssecret以及图片链接运行

image.png

  • 对比原图查看识别效果
    image.png

结语

有时间再完善,现在的话,又不是不能用~

相关文章
|
29天前
|
机器学习/深度学习 人工智能 算法
AI 基础知识从 0.6 到 0.7—— 彻底拆解深度神经网络训练的五大核心步骤
本文以一个经典的PyTorch手写数字识别代码示例为引子,深入剖析了简洁代码背后隐藏的深度神经网络(DNN)训练全过程。
442 56
|
3月前
|
机器学习/深度学习 数据采集 人工智能
基于生成式物理引擎的AI模型训练方法论
本文探讨了基于生成式物理引擎的AI模型训练方法论,旨在解决传统数据采集高成本、低效率的问题。生成式物理引擎结合物理建模与生成模型(如GAN、Diffusion),可模拟现实世界的力学规律,生成高质量、多样化的虚拟数据。文章介绍了其关键技术,包括神经网络物理建模、扩散模型场景生成及强化学习应用,并分析了其在机器人学习、数据增强和通用智能体训练中的实践价值。未来,随着可微物理引擎、跨模态生成等技术发展,生成式物理引擎将助力AI从静态监督学习迈向动态交互式世界建模,推动通用人工智能的实现。
229 57
基于生成式物理引擎的AI模型训练方法论
|
6月前
|
人工智能 计算机视觉
HarmonyOS NEXT AI基础视觉服务-背景替换
这是一个基于AI基础视觉服务的背景替换案例,通过调用设备相册选择图片并智能分割主体,支持动态更换背景颜色。主要步骤包括:1) 导入模块与定义组件;2) 实现图片选择与格式转换;3) 使用`subjectSegmentation.doSegmentation`接口完成主体分割;4) 通过随机RGB值实现背景色动态更换。代码结构清晰,功能完整,适合学习AI图像处理技术。
HarmonyOS NEXT AI基础视觉服务-背景替换
|
6月前
|
存储 人工智能 数据安全/隐私保护
HarmonyOS NEXT AI基础视觉服务-人脸对比
这是一套基于AI基础视觉服务实现的人脸对比系统,用户可通过调用设备相册选择两张图片,系统将提取人脸特征并计算相似度,最终以结构化数据形式展示对比结果(如相似度值和是否为同一人)。代码涵盖模块导入、双图选择、图像处理、人脸对比核心逻辑及UI界面构建,支持异常处理与权限管理,确保功能稳定性和兼容性。适配场景包括身份验证、人脸匹配等,具有较高的实用价值。
HarmonyOS NEXT AI基础视觉服务-人脸对比
|
5月前
|
人工智能 搜索推荐 API
AI赋能大学计划·大模型技术与应用实战学生训练营——华东师范大学站圆满结营
4月24日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行大模型应用实战学生训练营——华东师范大学站圆满结营。
207 2
|
6月前
|
人工智能 计算机视觉
HarmonyOS NEXT AI基础视觉服务-人脸识别
这是一个基于AI基础视觉服务的人脸识别案例,通过调用设备相册选择图片,利用MediaLibraryKit、ImageKit和CoreVisionKit等模块完成图像处理与人脸检测,并展示结构化结果。核心功能包括:相册访问授权、图像数据转换、人脸位置及特征点检测,最终以弹窗形式输出检测信息。代码涵盖模块导入、功能实现与UI构建,适合学习AI视觉应用开发流程。
|
2月前
|
机器学习/深度学习 人工智能 数据可视化
基于YOLOv8的AI虫子种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8与PyQt5开发,实现虫子种类识别,支持图片、视频、摄像头等多种输入方式,具备完整训练与部署流程,开箱即用,附带数据集与源码,适合快速搭建高精度昆虫识别系统。
基于YOLOv8的AI虫子种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
4月前
|
数据采集 存储 人工智能
智创 AI 新视界 -- 优化 AI 模型训练效率的策略与技巧(16 - 1)
本文深度聚焦 AI 模型训练效率优化,全面涵盖数据预处理(清洗、归一化、增强)、模型架构(轻量级应用、剪枝与量化)、训练算法与超参数调优(自适应学习率、优化算法)等核心维度。结合自动驾驶、动物图像识别、语音识别等多领域实际案例,佐以丰富且详细的代码示例,深度剖析技术原理与应用技巧,为 AI 从业者呈上极具专业性、可操作性与参考价值的技术宝典,助力高效优化模型训练效率与性能提升。
智创 AI 新视界 -- 优化 AI 模型训练效率的策略与技巧(16 - 1)
|
2月前
|
机器学习/深度学习 人工智能 API
AI-Compass LLM训练框架生态:整合ms-swift、Unsloth、Megatron-LM等核心框架,涵盖全参数/PEFT训练与分布式优化
AI-Compass LLM训练框架生态:整合ms-swift、Unsloth、Megatron-LM等核心框架,涵盖全参数/PEFT训练与分布式优化
|
2月前
|
机器学习/深度学习 人工智能 程序员
MiniMind:3小时训练26MB微型语言模型,开源项目助力AI初学者快速入门
在大型语言模型(LLaMA、GPT等)日益流行的今天,一个名为MiniMind的开源项目正在AI学习圈内引起广泛关注。项目让初学者能够在3小时内从零开始训练出一个仅26.88MB大小的微型语言模型。
158 1

热门文章

最新文章