阿里云高校计划视觉AI五天训练营教程 Day 1——视觉生产技术

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: 阿里云“在家实践”全新企划,阿里巴巴达摩院技术专家精心策划。大师授课配合钉群专人指导,五天时间完成身份证识别、人脸+表情识别、车辆保险等云上项目,快速入门视觉AI,为求学升职加分。

定义与分类

  • 定义:通过一个/一系列视觉过程,产出新的视觉表达
  • 分类:

    • (1)生成:从0到1,从无到有。
    • (2)拓展:从1到N,举一反三。
    • (3)摘要:从N到1,浓缩精华。
    • (4)升维:从An到An+1
    • (5)增强/变换:从A到B
    • (6)插入/合成:A+B=C
    • (7)擦除:A-B=C
  • 通用基础框架
    视觉生产-通用基础框架.png
  • 五个关键维度
    QQ截图20200924193819.png

精细理解

  • 分割抠图(唯能理解,方能生成)

    • 识别:知道是什么
    • 检测:知道在哪里
    • 分割:知道每个像素是什么
  • 模型框架
    QQ截图20200924194042.png
  • 效果展示

    • 人像抠图拓展
    • 物体抠图拓展
    • 场景抠图拓展

视觉生成

  • 框架流程
    QQ截图20200924194148.png
  • 鹿班电商设计
  • 鹿班场景智能美工
  • 鹿班行业设计
  • AlibabaWood
  • 视频生成框架流程
    image.png

视觉编辑

  • 视频植入
  • 植入位检测与定位
  • 动态检测分割
  • 视频内容擦除
  • 文字擦除
  • Logo擦除
  • 画幅变化

视觉增强

  • 视频增强
  • 人脸修复增强
  • 视频超分
  • 视频插帧
  • HDR色彩扩展
  • 风格迁移

视觉创造

  • 实体设计创造
  • 2D --->3D

视觉开放平台

  • 定位
  • 能力发布
  • 特点
  • 一站式能力选择
相关文章
|
13天前
|
机器学习/深度学习 存储 人工智能
【AI系统】感知量化训练 QAT
本文介绍感知量化训练(QAT)流程,旨在减少神经网络从FP32量化至INT8时的精度损失。通过在模型中插入伪量化节点(FakeQuant)模拟量化误差,并在训练中最小化这些误差,使模型适应量化环境。文章还探讨了伪量化节点的作用、正向与反向传播处理、TensorRT中的QAT模型高效推理,以及QAT与PTQ的对比,提供了实践技巧,如从良好校准的PTQ模型开始、采用余弦退火学习率计划等。
52 2
【AI系统】感知量化训练 QAT
|
13天前
|
机器学习/深度学习 存储 人工智能
【AI系统】训练后量化与部署
本文详细介绍了训练后量化技术,涵盖动态和静态量化方法,旨在将模型权重和激活从浮点数转换为整数,以优化模型大小和推理速度。通过KL散度等校准方法和量化粒度控制,文章探讨了如何平衡模型精度与性能,同时提供了端侧量化推理部署的具体实现步骤和技术技巧。
39 1
【AI系统】训练后量化与部署
|
12天前
|
人工智能 PyTorch 测试技术
【AI系统】并行训练基本介绍
分布式训练通过将任务分配至多个节点,显著提升模型训练效率与精度。本文聚焦PyTorch2.0中的分布式训练技术,涵盖数据并行、模型并行及混合并行等策略,以及DDP、RPC等核心组件的应用,旨在帮助开发者针对不同场景选择最合适的训练方式,实现高效的大模型训练。
47 8
|
13天前
|
人工智能 自然语言处理 搜索推荐
AI 赋能:开启内容生产效率革命的密钥》
在数字化时代,AI技术正成为提高内容生产效率的关键工具。本文探讨了AI在文章写作、文案创作、翻译、图像识别与生成及数据分析等方面的应用,分析了其提高效率的方式、带来的优势与挑战,并通过新闻媒体、营销、教育等行业案例,展望了AI在内容生产领域的未来。
|
22天前
|
机器学习/深度学习 存储 人工智能
【AI系统】谷歌 TPU v2 训练芯片
2017年,谷歌推出TPU v2,专为神经网络训练设计,标志着从推理转向训练的重大转变。TPU v2引入多项创新,包括Vector Memory、Vector Unit、MXU及HBM内存,以应对训练中数据并行、计算复杂度高等挑战。其高效互联技术构建了TPU v2超级计算机,显著提升大规模模型训练的效率和性能。
39 0
|
2月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
187 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
2月前
|
自然语言处理 IDE 测试技术
通义灵码史上最全使用教程:秀一秀AI编程新肌肉
通义灵码是阿里云推出的一款智能编码辅助工具,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码优化、注释生成、代码解释、研发智能问答、异常报错排查等功能。它支持 Visual Studio Code 和 JetBrains IDEs,适配多 IDE 原生设计,帮助开发者高效、流畅地编码。官方提供了详细的下载和安装指南,以及丰富的功能介绍和使用指南。
424 3
|
2月前
|
机器学习/深度学习 人工智能 数据挖掘
阿里云云工开物助力高校的高校计划有什么用
阿里云“云工开物”高校计划旨在推动云计算技术在高校的普及与应用,通过提供云计算资源、算力支持、在线学习平台、开发者社区及数据科学竞赛等,帮助大学生提升实践能力和创新思维,培养更多创新型人才,促进校企合作。
272 2
|
2月前
|
存储 人工智能 供应链
AI与能源系统:优化能源生产和消费
【10月更文挑战第9天】在当前全球能源转型的关键时期,人工智能(AI)正逐渐成为推动能源系统优化与升级的重要力量。本文探讨了AI在能源生产、分配、存储和消费等方面的应用。在能源生产中,AI通过智能预测与调度、故障预警及优化资源配置等方式提升效率;在能源分配与存储方面,AI推动智能电网管理和储能系统优化;在能源消费端,AI实现精细化管理,如智能家庭能源管理和工业节能。未来,AI将进一步融入能源系统的各个环节,促进能源的高效配置与可持续发展。然而,面对数据安全和算法透明度等挑战,需加强监管与伦理审查,确保AI技术健康发展。
|
2月前
|
机器学习/深度学习 人工智能 供应链
精准农业:AI在农业生产中的应用
【10月更文挑战第1天】随着科技的发展,人工智能(AI)逐渐渗透到农业领域,通过精准监控和管理提升了农业生产效率和质量。AI在精准农业中的应用包括:精准农田管理,如个性化灌溉和施肥;作物病虫害识别与预测,及时发现并预防病虫害;智能农机自动化作业,提高作业效率;农产品质量检测与分类,确保品质;农业供应链优化,预测需求和价格。尽管面临数据收集、技术接受度等挑战,AI在精准农业中的未来前景广阔,有望实现全程自动化作业、数据驱动决策及智能预警系统,推动农业可持续发展。
134 11
下一篇
DataWorks