OkHttp请求耗时统计

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: OkHttp请求耗时统计

目录介绍

  • 01.先提问一个问题
  • 02.EventListener回调原理
  • 03.请求开始结束监听
  • 04.dns解析开始结束监听
  • 05.连接开始结束监听
  • 06.TLS连接开始结束监听
  • 07.连接绑定和释放监听
  • 08.request请求监听
  • 09.response响应监听
  • 10.如何监听统计耗时
  • 11.应用实践之案例

01.先提问一个问题

  • OkHttp如何进行各个请求环节的耗时统计呢?

    • OkHttp 版本提供了EventListener接口,可以让调用者接收一系列网络请求过程中的事件,例如DNS解析、TSL/SSL连接、Response接收等。
    • 通过继承此接口,调用者可以监视整个应用中网络请求次数、流量大小、耗时(比如dns解析时间,请求时间,响应时间等等)情况。

02.EventListener回调原理

  • 先来看一下

    public abstract class EventListener {
       // 按照请求顺序回调
        public void callStart(Call call) {}
        // 域名解析
        public void dnsStart(Call call, String domainName) {}
        public void dnsEnd(Call call, String domainName, List<InetAddress> inetAddressList) {}
        // 释放当前Transmitter的RealConnection
        public void connectionReleased(Call call, Connection connection) {}
        public void connectionAcquired(call, result){};
        // 开始连接
        public void connectStart(call, route.socketAddress(), proxy){}
        // 请求
        public void requestHeadersStart(@NotNull Call call){}
        public void requestHeadersEnd(@NotNull Call call, @NotNull Request request) {}
        // 响应
        public void requestBodyStart(@NotNull Call call) {}
        public void requestBodyEnd(@NotNull Call call, long byteCount) {}
        // 结束
        public void callEnd(Call call) {}
        // 失败
        public void callFailed(Call call, IOException ioe) {}
    }

03.请求开始结束监听

  • callStart(Call call) 请求开始

    • 当一个Call(代表一个请求)被同步执行或被添加异步队列中时,即会调用这个回调方法。
    • 需要说明这个方法是在dispatcher.executed/enqueue前执行的。
    • 由于线程或事件流的限制,这里的请求开始并不是真正的去执行的这个请求。如果发生重定向和多域名重试时,这个方法也仅被调用一次。
    final class RealCall implements Call {
        @Override 
        public Response execute() throws IOException {
            eventListener.callStart(this);
            client.dispatcher().executed(this);
            Response result = getResponseWithInterceptorChain();
            if (result == null) throw new IOException("Canceled");
            return result;    
        }
    
        @Override 
        public void enqueue(Callback responseCallback) {
            eventListener.callStart(this);
            client.dispatcher().enqueue(new AsyncCall(responseCallback));
        }
    }
  • callFailed/callEnd 请求异常和请求结束

    • 每一个callStart都对应着一个callFailed或callEnd。
    • callFailed在两种情况下被调用,第一种是在请求执行的过程中发生异常时。第二种是在请求结束后,关闭输入流时产生异常时。
    final class RealCall implements Call {
        @Override 
        public Response execute() throws IOException {
            try {
              client.dispatcher().executed(this);
              Response result = getResponseWithInterceptorChain();
              if (result == null) throw new IOException("Canceled");
              return result;
            } catch (IOException e) {
              eventListener.callFailed(this, e);
              throw e;
            }
        }
        final class AsyncCall extends NamedRunnable {
            @Override 
            protected void execute() {
                try {
                    Response response = getResponseWithInterceptorChain();
                } catch (IOException e) {
                    eventListener.callFailed(RealCall.this, e);
    
                }
            }
        }
    }
    
    //第二种
    public final class StreamAllocation {
        public void streamFinished(boolean noNewStreams, HttpCodec codec, long bytesRead, IOException e) {
            ...
            if (e != null) {
              eventListener.callFailed(call, e);
            } else if (callEnd) {
              eventListener.callEnd(call);
            }
            ...
        }
    }
    • callEnd也有两种调用场景。第一种也是在关闭流时。第二种是在释放连接时。
    public final class StreamAllocation {
    
        public void streamFinished(boolean noNewStreams, HttpCodec codec, long bytesRead, IOException e) {
            ...
            if (e != null) {
              eventListener.callFailed(call, e);
            } else if (callEnd) {
              eventListener.callEnd(call);
            }
            ...
        }
    
        public void release() {
            ...
            if (releasedConnection != null) {
              eventListener.connectionReleased(call, releasedConnection);
              eventListener.callEnd(call);
            }
        }
    }
    • 为什么会将关闭流和关闭连接区分开?

      • 在http2版本中,一个连接上允许打开多个流,OkHttp使用StreamAllocation来作为流和连接的桥梁。当一个流被关闭时,要检查这条连接上还有没有其他流,如果没有其他流了,则可以将连接关闭了。
      • streamFinished和release作用是一样的,都是关闭当前流,并检查是否需要关闭连接。不同的是,当调用者手动取消请求时,调用的是release方法,并由调用者负责关闭请求输出流和响应输入流。

04.dns解析开始结束监听

  • dnsStart开始

    • 其中的lookup(String hostname)方法代表了域名解析的过程,dnsStart/dnsEnd就是在lookup前后被调用的
    • DNS解析是请求DNS(Domain Name System)服务器,将域名解析成ip的过程。域名解析工作是由JDK中的InetAddress类完成的。
      /** Prepares the socket addresses to attempt for the current proxy or host. */
      private void resetNextInetSocketAddress(Proxy proxy) throws IOException {
        if (proxy.type() == Proxy.Type.SOCKS) {
          inetSocketAddresses.add(InetSocketAddress.createUnresolved(socketHost, socketPort));
        } else {
          eventListener.dnsStart(call, socketHost);
    
          // Try each address for best behavior in mixed IPv4/IPv6 environments.
          List<InetAddress> addresses = address.dns().lookup(socketHost);
          if (addresses.isEmpty()) {
            throw new UnknownHostException(address.dns() + " returned no addresses for " + socketHost);
          }
    
          eventListener.dnsEnd(call, socketHost, addresses);
        }
      }
  • 那么RouteSelector这个类是在哪里调用

    public final class StreamAllocation {
    
      public StreamAllocation(ConnectionPool connectionPool, Address address, Call call,
          EventListener eventListener, Object callStackTrace) {
        this.routeSelector = new RouteSelector(address, routeDatabase(), call, eventListener);
      }
    }

05.连接开始结束监听

  • connectStart连接开始

    • OkHttp是使用Socket接口建立Tcp连接的,所以这里的连接就是指Socket建立一个连接的过程。
    • 当连接被重用时,connectStart/connectEnd不会被调用。当请求被重定向到新的域名后,connectStart/connectEnd会被调用多次。
      private void connectSocket(int connectTimeout, int readTimeout, Call call,
          EventListener eventListener) throws IOException {
        Proxy proxy = route.proxy();
        Address address = route.address();
    
        rawSocket = proxy.type() == Proxy.Type.DIRECT || proxy.type() == Proxy.Type.HTTP
            ? address.socketFactory().createSocket()
            : new Socket(proxy);
    
        eventListener.connectStart(call, route.socketAddress(), proxy);
      }
  • connectEnd连接结束

    • 因为创建的连接有两种类型(服务端直连和隧道代理),所以callEnd有两处调用位置。为了在基于代理的连接上使用SSL,需要单独发送CONECT请求。
    • 在连接过程中,无论是Socket连接失败,还是TSL/SSL握手失败,都会回调connectEnd。
      public void connect(int connectTimeout, int readTimeout, int writeTimeout,
        while (true) {
          try {
            establishProtocol(connectionSpecSelector, pingIntervalMillis, call, eventListener);
            eventListener.connectEnd(call, route.socketAddress(), route.proxy(), protocol);
            break;
          } catch (IOException e) {
            eventListener.connectFailed(call, route.socketAddress(), route.proxy(), null, e);
          }
      }
    
      private void connectTunnel(int connectTimeout, int readTimeout, int writeTimeout, Call call,
          EventListener eventListener) throws IOException {
        Request tunnelRequest = createTunnelRequest();
        HttpUrl url = tunnelRequest.url();
        for (int i = 0; i < MAX_TUNNEL_ATTEMPTS; i++) {
          connectSocket(connectTimeout, readTimeout, call, eventListener);
          eventListener.connectEnd(call, route.socketAddress(), route.proxy(), null);
        }
      }

06.TLS连接开始结束监听

  • 开始连接,代码如下所示

    • 在上面看到,在Socket建立连接后,会执行一个establishProtocol方法,这个方法的作用就是TSL/SSL握手。
    • 当存在重定向或连接重试的情况下,secureConnectStart/secureConnectEnd会被调用多次。
      private void establishProtocol(ConnectionSpecSelector connectionSpecSelector,
          int pingIntervalMillis, Call call, EventListener eventListener) throws IOException {
        if (route.address().sslSocketFactory() == null) {
          protocol = Protocol.HTTP_1_1;
          socket = rawSocket;
          return;
        }
    
        eventListener.secureConnectStart(call);
        connectTls(connectionSpecSelector);
        eventListener.secureConnectEnd(call, handshake);
      }
  • 结合连接监听可知

    • 如果我们使用了HTTPS安全连接,在TCP连接成功后需要进行TLS安全协议通信,等TLS通讯结束后才能算是整个连接过程的结束,也就是说connectEnd在secureConnectEnd之后调用。
  • 所以顺序是这样的

    • connectStart ---> secureConnectStart ---> secureConnectEnd ---> ConnectEnd

07.连接绑定和释放监听

  • 因为OkHttp是基于连接复用的,当一次请求结束后并不会马上关闭当前连接,而是放到连接池中。

    • 当有相同域名的请求时,会从连接池中取出对应的连接使用,减少了连接的频繁创建和销毁。
    • 当根据一个请求从连接池取连接时,并打开输入输出流就是acquired,用完释放流就是released。
    • 如果直接复用StreamAllocation中的连接,则不会调用connectionAcquired/connectReleased。
      private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
          int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
        synchronized (connectionPool) {
          if (result == null) {
            // 第一次查缓存 Attempt to get a connection from the pool.
            // Attempt to get a connection from the pool.
            Internal.instance.get(connectionPool, address, this, null);
          }
        }
    
        if (releasedConnection != null) {
          eventListener.connectionReleased(call, releasedConnection);
        }
        if (foundPooledConnection) {
          eventListener.connectionAcquired(call, result);
        }
    
        synchronized (connectionPool) {
          if (canceled) throw new IOException("Canceled");
    
          if (newRouteSelection) {
            //第二次查缓存
            List<Route> routes = routeSelection.getAll();
            for (int i = 0, size = routes.size(); i < size; i++) {
              Route route = routes.get(i);
              Internal.instance.get(connectionPool, address, this, route);
              if (connection != null) {
                foundPooledConnection = true;
                result = connection;
                this.route = route;
                break;
              }
            }
          }
    
          if (!foundPooledConnection) {
            //如果缓存没有,则新建连接
            route = selectedRoute;
            refusedStreamCount = 0;
            result = new RealConnection(connectionPool, selectedRoute);
            acquire(result, false);
          }
        }
    
        // If we found a pooled connection on the 2nd time around, we're done.
        if (foundPooledConnection) {
          eventListener.connectionAcquired(call, result);
          return result;
        }
    
        // Do TCP + TLS handshakes. This is a blocking operation.
        result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis,
            connectionRetryEnabled, call, eventListener);
        routeDatabase().connected(result.route());
    
        eventListener.connectionAcquired(call, result);
        return result;
      }
  • connectionAcquired是在连接成功后被调用的。

    • 但是在连接复用的情况下没有连接步骤,connectAcquired会在获取缓存连接后被调用。由于StreamAllocation是连接“Stream”和“Connection”的桥梁,所以在StreamAllocation中会持有一个RealConnection引用。StreamAllocation在查找可用连接的顺序为:StreamAllocation.RealConnection -> ConnectionPool -> ConnectionPool -> new RealConnection

08.request请求监听

  • 在OkHttp中,HttpCodec负责对请求和响应按照Http协议进行编解码,包含发送请求头、发送请求体、读取响应头、读取响应体。
  • requestHeaders开始和结束,这个直接看CallServerInterceptor拦截器代码即可。

    public final class CallServerInterceptor implements Interceptor {
    
      @Override public Response intercept(Chain chain) throws IOException {
        RealInterceptorChain realChain = (RealInterceptorChain) chain;
        HttpCodec httpCodec = realChain.httpStream();
        StreamAllocation streamAllocation = realChain.streamAllocation();
        RealConnection connection = (RealConnection) realChain.connection();
        Request request = realChain.request();
    
        long sentRequestMillis = System.currentTimeMillis();
    
        realChain.eventListener().requestHeadersStart(realChain.call());
        httpCodec.writeRequestHeaders(request);
        realChain.eventListener().requestHeadersEnd(realChain.call(), request);
        
        if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
          if (responseBuilder == null) {
            // Write the request body if the "Expect: 100-continue" expectation was met.
            realChain.eventListener().requestBodyStart(realChain.call());
            long contentLength = request.body().contentLength();
            CountingSink requestBodyOut =
                new CountingSink(httpCodec.createRequestBody(request, contentLength));
            BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
    
            request.body().writeTo(bufferedRequestBody);
            bufferedRequestBody.close();
            realChain.eventListener().requestBodyEnd(realChain.call(), requestBodyOut.successfulCount);
          } 
        }
        return response;
      }
    }

09.response响应监听

  • responseHeadersStart和responseHeadersEnd代码如下所示

    public final class CallServerInterceptor implements Interceptor {
    
      @Override public Response intercept(Chain chain) throws IOException {
    
        Response.Builder responseBuilder = null;
        if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
          if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
            httpCodec.flushRequest();
            realChain.eventListener().responseHeadersStart(realChain.call());
            responseBuilder = httpCodec.readResponseHeaders(true);
          }
        }
    
        httpCodec.finishRequest();
    
        if (responseBuilder == null) {
          realChain.eventListener().responseHeadersStart(realChain.call());
          responseBuilder = httpCodec.readResponseHeaders(false);
        }
    
        int code = response.code();
        if (code == 100) {
          // server sent a 100-continue even though we did not request one.
          // try again to read the actual response
          responseBuilder = httpCodec.readResponseHeaders(false);
    
          response = responseBuilder
                  .request(request)
                  .handshake(streamAllocation.connection().handshake())
                  .sentRequestAtMillis(sentRequestMillis)
                  .receivedResponseAtMillis(System.currentTimeMillis())
                  .build();
    
          code = response.code();
        }
    
        realChain.eventListener() .responseHeadersEnd(realChain.call(), response);
        return response;
      }
    }
  • responseBodyStart监听

    • 响应体的读取有些复杂,要根据不同类型的Content-Type决定如何读取响应体,例如固定长度的、基于块(chunk)数据的、未知长度的。具体看openResponseBody方法里面的代码。
    • 同时Http1与Http2也有不同的解析方式。下面以Http1为例。
    public final class Http1Codec implements HttpCodec {
    
      @Override public ResponseBody openResponseBody(Response response) throws IOException {
        streamAllocation.eventListener.responseBodyStart(streamAllocation.call);
        String contentType = response.header("Content-Type");
    
        if (!HttpHeaders.hasBody(response)) {
          Source source = newFixedLengthSource(0);
          return new RealResponseBody(contentType, 0, Okio.buffer(source));
        }
    
        if ("chunked".equalsIgnoreCase(response.header("Transfer-Encoding"))) {
          Source source = newChunkedSource(response.request().url());
          return new RealResponseBody(contentType, -1L, Okio.buffer(source));
        }
    
        long contentLength = HttpHeaders.contentLength(response);
        if (contentLength != -1) {
          Source source = newFixedLengthSource(contentLength);
          return new RealResponseBody(contentType, contentLength, Okio.buffer(source));
        }
    
        return new RealResponseBody(contentType, -1L, Okio.buffer(newUnknownLengthSource()));
      }
    }
  • responseBodyEnd监听

    • 由下面代码可知,当响应结束后,会调用连接callEnd回调(如果异常则会调用callFailed回调)
    public final class StreamAllocation {
      public void streamFinished(boolean noNewStreams, HttpCodec codec, long bytesRead, IOException e) {
        eventListener.responseBodyEnd(call, bytesRead);
        if (releasedConnection != null) {
          eventListener.connectionReleased(call, releasedConnection);
        }
        if (e != null) {
          eventListener.callFailed(call, e);
        } else if (callEnd) {
          eventListener.callEnd(call);
        }
      }
    }

10.如何监听统计耗时

  • 如何消耗记录时间

    • 在OkHttp库中有一个EventListener类。该类是网络事件的侦听器。扩展这个类以监视应用程序的HTTP调用的数量、大小和持续时间。
    • 所有启动/连接/获取事件最终将接收到匹配的结束/释放事件,要么成功(非空参数),要么失败(非空可抛出)。
    • 比如,可以在开始链接记录时间;dns开始,结束等方法解析记录时间,可以计算dns的解析时间。
    • 比如,可以在开始请求记录时间,记录connectStart,connectEnd等方法时间,则可以计算出connect连接时间。
  • 代码如下所示

    • Eventlistener只适用于没有并发的情况,如果有多个请求并发执行我们需要使用Eventlistener. Factory来给每个请求创建一个Eventlistener。
    • 这个mRequestId是唯一值,可以选择使用AtomicInteger自增+1的方式设置id,这个使用了cas保证多线程条件下的原子性特性。
    /**
     * <pre>
     *     @author yangchong
     *     email  : yangchong211@163.com
     *     time  : 2019/07/22
     *     desc  : EventListener子类
     *     revise:
     * </pre>
     */
    public class NetworkListener extends EventListener {
    
        private static final String TAG = "NetworkEventListener";
        private static AtomicInteger mNextRequestId = new AtomicInteger(0);
        private String mRequestId ;
    
        public static Factory get(){
            Factory factory = new Factory() {
                @NotNull
                @Override
                public EventListener create(@NotNull Call call) {
                    return new NetworkListener();
                }
            };
            return factory;
        }
    
        @Override
        public void callStart(@NotNull Call call) {
            super.callStart(call);
            //mRequestId = mNextRequestId.getAndIncrement() + "";
            //getAndAdd,在多线程下使用cas保证原子性
            mRequestId = String.valueOf(mNextRequestId.getAndIncrement());
            ToolLogUtils.i(TAG+"-------callStart---requestId-----"+mRequestId);
            saveEvent(NetworkTraceBean.CALL_START);
            saveUrl(call.request().url().toString());
        }
    
        @Override
        public void dnsStart(@NotNull Call call, @NotNull String domainName) {
            super.dnsStart(call, domainName);
            ToolLogUtils.d(TAG, "dnsStart");
            saveEvent(NetworkTraceBean.DNS_START);
        }
    
        @Override
        public void dnsEnd(@NotNull Call call, @NotNull String domainName, @NotNull List<InetAddress> inetAddressList) {
            super.dnsEnd(call, domainName, inetAddressList);
            ToolLogUtils.d(TAG, "dnsEnd");
            saveEvent(NetworkTraceBean.DNS_END);
        }
    
        @Override
        public void connectStart(@NotNull Call call, @NotNull InetSocketAddress inetSocketAddress, @NotNull Proxy proxy) {
            super.connectStart(call, inetSocketAddress, proxy);
            ToolLogUtils.d(TAG, "connectStart");
            saveEvent(NetworkTraceBean.CONNECT_START);
        }
    
        @Override
        public void secureConnectStart(@NotNull Call call) {
            super.secureConnectStart(call);
            ToolLogUtils.d(TAG, "secureConnectStart");
            saveEvent(NetworkTraceBean.SECURE_CONNECT_START);
        }
    
        @Override
        public void secureConnectEnd(@NotNull Call call, @Nullable Handshake handshake) {
            super.secureConnectEnd(call, handshake);
            ToolLogUtils.d(TAG, "secureConnectEnd");
            saveEvent(NetworkTraceBean.SECURE_CONNECT_END);
        }
    
        @Override
        public void connectEnd(@NotNull Call call, @NotNull InetSocketAddress inetSocketAddress,
                               @NotNull Proxy proxy, @Nullable Protocol protocol) {
            super.connectEnd(call, inetSocketAddress, proxy, protocol);
            ToolLogUtils.d(TAG, "connectEnd");
            saveEvent(NetworkTraceBean.CONNECT_END);
        }
    
        @Override
        public void connectFailed(@NotNull Call call, @NotNull InetSocketAddress inetSocketAddress, @NotNull Proxy proxy, @Nullable Protocol protocol, @NotNull IOException ioe) {
            super.connectFailed(call, inetSocketAddress, proxy, protocol, ioe);
            ToolLogUtils.d(TAG, "connectFailed");
        }
    
        @Override
        public void requestHeadersStart(@NotNull Call call) {
            super.requestHeadersStart(call);
            ToolLogUtils.d(TAG, "requestHeadersStart");
            saveEvent(NetworkTraceBean.REQUEST_HEADERS_START);
        }
    
        @Override
        public void requestHeadersEnd(@NotNull Call call, @NotNull Request request) {
            super.requestHeadersEnd(call, request);
            ToolLogUtils.d(TAG, "requestHeadersEnd");
            saveEvent(NetworkTraceBean.REQUEST_HEADERS_END);
        }
    
        @Override
        public void requestBodyStart(@NotNull Call call) {
            super.requestBodyStart(call);
            ToolLogUtils.d(TAG, "requestBodyStart");
            saveEvent(NetworkTraceBean.REQUEST_BODY_START);
        }
    
        @Override
        public void requestBodyEnd(@NotNull Call call, long byteCount) {
            super.requestBodyEnd(call, byteCount);
            ToolLogUtils.d(TAG, "requestBodyEnd");
            saveEvent(NetworkTraceBean.REQUEST_BODY_END);
        }
    
        @Override
        public void responseHeadersStart(@NotNull Call call) {
            super.responseHeadersStart(call);
            ToolLogUtils.d(TAG, "responseHeadersStart");
            saveEvent(NetworkTraceBean.RESPONSE_HEADERS_START);
        }
    
        @Override
        public void responseHeadersEnd(@NotNull Call call, @NotNull Response response) {
            super.responseHeadersEnd(call, response);
            ToolLogUtils.d(TAG, "responseHeadersEnd");
            saveEvent(NetworkTraceBean.RESPONSE_HEADERS_END);
        }
    
        @Override
        public void responseBodyStart(@NotNull Call call) {
            super.responseBodyStart(call);
            ToolLogUtils.d(TAG, "responseBodyStart");
            saveEvent(NetworkTraceBean.RESPONSE_BODY_START);
        }
    
        @Override
        public void responseBodyEnd(@NotNull Call call, long byteCount) {
            super.responseBodyEnd(call, byteCount);
            ToolLogUtils.d(TAG, "responseBodyEnd");
            saveEvent(NetworkTraceBean.RESPONSE_BODY_END);
        }
    
        @Override
        public void callEnd(@NotNull Call call) {
            super.callEnd(call);
            ToolLogUtils.d(TAG, "callEnd");
            saveEvent(NetworkTraceBean.CALL_END);
            generateTraceData();
            NetWorkUtils.timeoutChecker(mRequestId);
        }
    
        @Override
        public void callFailed(@NotNull Call call, @NotNull IOException ioe) {
            super.callFailed(call, ioe);
            ToolLogUtils.d(TAG, "callFailed");
        }
    
        private void generateTraceData(){
            NetworkTraceBean traceModel = IDataPoolHandleImpl.getInstance().getNetworkTraceModel(mRequestId);
            Map<String, Long> eventsTimeMap = traceModel.getNetworkEventsMap();
            Map<String, Long> traceList = traceModel.getTraceItemList();
            traceList.put(NetworkTraceBean.TRACE_NAME_TOTAL,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.CALL_START, NetworkTraceBean.CALL_END));
            traceList.put(NetworkTraceBean.TRACE_NAME_DNS,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.DNS_START, NetworkTraceBean.DNS_END));
            traceList.put(NetworkTraceBean.TRACE_NAME_SECURE_CONNECT,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.SECURE_CONNECT_START, NetworkTraceBean.SECURE_CONNECT_END));
            traceList.put(NetworkTraceBean.TRACE_NAME_CONNECT,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.CONNECT_START, NetworkTraceBean.CONNECT_END));
            traceList.put(NetworkTraceBean.TRACE_NAME_REQUEST_HEADERS,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.REQUEST_HEADERS_START, NetworkTraceBean.REQUEST_HEADERS_END));
            traceList.put(NetworkTraceBean.TRACE_NAME_REQUEST_BODY,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.REQUEST_BODY_START, NetworkTraceBean.REQUEST_BODY_END));
            traceList.put(NetworkTraceBean.TRACE_NAME_RESPONSE_HEADERS,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.RESPONSE_HEADERS_START, NetworkTraceBean.RESPONSE_HEADERS_END));
            traceList.put(NetworkTraceBean.TRACE_NAME_RESPONSE_BODY,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.RESPONSE_BODY_START, NetworkTraceBean.RESPONSE_BODY_END));
        }
    
        private void saveEvent(String eventName){
            NetworkTraceBean networkTraceModel = IDataPoolHandleImpl.getInstance().getNetworkTraceModel(mRequestId);
            Map<String, Long> networkEventsMap = networkTraceModel.getNetworkEventsMap();
            networkEventsMap.put(eventName, SystemClock.elapsedRealtime());
        }
    
        private void saveUrl(String url){
            NetworkTraceBean networkTraceModel = IDataPoolHandleImpl.getInstance().getNetworkTraceModel(mRequestId);
            networkTraceModel.setUrl(url);
        }
    
    }
  • 关于执行顺序,打印结果如下所示

    2020-09-22 20:50:15.351 28144-28277/cn.com.zwwl.bayuwen D/NetworkEventListener: dnsStart
    2020-09-22 20:50:15.373 28144-28277/cn.com.zwwl.bayuwen D/NetworkEventListener: dnsEnd
    2020-09-22 20:50:15.374 28144-28277/cn.com.zwwl.bayuwen D/NetworkEventListener: connectStart
    2020-09-22 20:50:15.404 28144-28277/cn.com.zwwl.bayuwen D/NetworkEventListener: secureConnectStart
    2020-09-22 20:50:15.490 28144-28277/cn.com.zwwl.bayuwen D/NetworkEventListener: secureConnectEnd
    2020-09-22 20:50:15.490 28144-28277/cn.com.zwwl.bayuwen D/NetworkEventListener: connectEnd
    2020-09-22 20:50:15.492 28144-28277/cn.com.zwwl.bayuwen D/NetworkEventListener: requestHeadersStart
    2020-09-22 20:50:15.492 28144-28277/cn.com.zwwl.bayuwen D/NetworkEventListener: requestHeadersEnd
    2020-09-22 20:50:15.528 28144-28277/cn.com.zwwl.bayuwen D/NetworkEventListener: responseHeadersStart
    2020-09-22 20:50:15.528 28144-28277/cn.com.zwwl.bayuwen D/NetworkEventListener: responseHeadersEnd
    2020-09-22 20:50:15.532 28144-28277/cn.com.zwwl.bayuwen D/NetworkEventListener: responseBodyStart
    2020-09-22 20:50:15.534 28144-28277/cn.com.zwwl.bayuwen D/NetworkEventListener: responseBodyEnd
    2020-09-22 20:50:15.547 28144-28277/cn.com.zwwl.bayuwen D/NetworkEventListener: callEnd

11.应用实践之案例

image
image
image
image
image

  • 网络拦截分析,主要是分析网络流量损耗,以及request,respond过程时间。打造网络分析工具……
  • 项目代码地址:https://github.com/yangchong211/YCAndroidTool
  • 如果你觉得这个拦截网络助手方便了测试,以及开发中查看网络数据,可以star一下……

网络拦截库:https://github.com/yangchong211/YCAndroidTool

目录
相关文章
|
弹性计算 负载均衡 监控
jemeter压测【2万用户每秒5次请求在30秒内处理完请求】(二)
jemeter压测【2万用户每秒5次请求在30秒内处理完请求】
181 0
|
弹性计算 负载均衡 Java
jemeter压测【2万用户每秒5次请求在30秒内处理完请求】(一)
jemeter压测【2万用户每秒5次请求在30秒内处理完请求】
106 0
|
4月前
|
缓存 分布式计算 Java
最简单的服务响应时长优化方法,没有之一
最简单的服务响应时长优化方法,没有之一
|
4月前
WebApi 接口请求耗时记录
WebApi 接口请求耗时记录
19 0
|
4月前
.NetCore 接口请求耗时记录
.NetCore 接口请求耗时记录
42 0
|
5月前
|
存储 Java Serverless
函数计算产品使用问题之执行一个比较耗时的操作导致请求超时时,该怎么办
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
7月前
933.最近的请求次数
933.最近的请求次数
37 0
|
中间件
[Nestjs] 限制请求次数
在NestJS中限制请求次数,可以使用中间件来实现。以下是一种常见的方式: 1.创建一个限制请求次数的中间件: 创建一个名为 RateLimitMiddleware 的中间件,该中间件用于限制请求次数。在该中间件中,你可以使用使用第三方库(如 express-rate-limit、fastify-rate-limit)来实现请求限制逻辑,这些库提供了方便的方式来设置每个IP地址或其他标识符的请求次数限制。
250 0
|
算法 前端开发
前端算法-最近的请求次数
前端算法-最近的请求次数
|
缓存 关系型数据库 MySQL
使用 Go 每分钟处理百万请求
使用 Go 每分钟处理百万请求
119 0
使用 Go 每分钟处理百万请求