Flink RocksDB 状态后端参数调优实践

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: RocksDB 的配置也是极为复杂的,可调整的参数多达百个,没有放之四海而皆准的优化方案。如果仅考虑 Flink 状态存储这一方面,我们仍然可以总结出一些相对普适的优化思路。本文先介绍一些基础知识,再列举方法。

作者:LittleMagic

截至当前,Flink 作业的状态后端仍然只有 Memory、FileSystem 和 RocksDB 三种可选,且 RocksDB 是状态数据量较大(GB 到 TB 级别)时的唯一选择。RocksDB 的性能发挥非常仰赖调优,如果全部采用默认配置,读写性能有可能会很差。

但是,RocksDB 的配置也是极为复杂的,可调整的参数多达百个,没有放之四海而皆准的优化方案。如果仅考虑 Flink 状态存储这一方面,我们仍然可以总结出一些相对普适的优化思路。本文先介绍一些基础知识,再列举方法。

Note:本文的内容是基于我们在线上运行的 Flink 1.9 版本实践得出的。在1.10版本及以后,由于 TaskManager 内存模型重构,RocksDB 内存默认成为了堆外托管内存的一部分,可以免去一些手动调整的麻烦。如果性能仍然不佳,需要干预,则必须将 state.backend.rocksdb.memory.managed 参数设为 false 来禁用 RocksDB 内存托管。

State R/W on RocksDB

RocksDB 作为 Flink 状态后端时的读写逻辑与一般情况略有不同,如下图所示。

1.jpg

Flink 作业中的每一个注册的状态都对应一个列族(column family),即包含自己独立的 memtable 和 sstable 集合。写操作会先将数据写入活动 memtable,写满之后则会转换为不可变 memtable,并 flush 到磁盘中形成 sstable。读操作则会依次在活动 memtable、不可变 memtable、block cache 和 sstable 中寻找目标数据。另外,sstable 也需要通过 compaction 策略进行合并,最终形成分层的 LSM Tree 存储结构,老生常谈了。

特别地,由于 Flink 在每个检查点周期都会将 RocksDB 的数据快照持久化到文件系统,所以自然也就不需要再写预写日志(WAL)了,可以安全地关闭WAL与fsync。

之前笔者已经详细讲解过 RocksDB 的 compaction 策略,并且提到了读放大、写放大和空间放大的概念,对 RocksDB 的调优本质上就是在这三个因子之间取得平衡。而在 Flink 作业这种注重实时性的场合,则要重点考虑读放大和写放大。

2.jpg

Tuning MemTable

memtable 作为 LSM Tree 体系里的读写缓存,对写性能有较大的影响。以下是一些值得注意的参数。为方便对比,下文都会将 RocksDB 的原始参数名与 Flink 配置中的参数名一并列出,用竖线分割。

  • write_buffer_size | state.backend.rocksdb.writebuffer.size
    单个 memtable 的大小,默认是64MB。当 memtable 大小达到此阈值时,就会被标记为不可变。一般来讲,适当增大这个参数可以减小写放大带来的影响,但同时会增大 flush 后 L0、L1 层的压力,所以还需要配合修改 compaction 参数,后面再提。
  • max_write_buffer_number | state.backend.rocksdb.writebuffer.count
  1. 的最大数量(包含活跃的和不可变的),默认是2。当全部 memtable 都写满但是 flush 速度较慢时,就会造成写停顿,所以如果内存充足或者使用的是机械硬盘,建议适当调大这个参数,如4。
  • min_write_buffer_number_to_merge | state.backend.rocksdb.writebuffer.number-to-merge
    在 flush 发生之前被合并的 memtable 最小数量,默认是1。举个例子,如果此参数设为2,那么当有至少两个不可变 memtable 时,才有可能触发 flush(亦即如果只有一个不可变 memtable,就会等待)。调大这个值的好处是可以使更多的更改在 flush 前就被合并,降低写放大,但同时又可能增加读放大,因为读取数据时要检查的 memtable 变多了。经测试,该参数设为2或3相对较好。

Tuning Block/Block Cache

block 是 sstable 的基本存储单位。block cache 则扮演读缓存的角色,采用 LRU 算法存储最近使用的 block,对读性能有较大的影响。

  • block_size | state.backend.rocksdb.block.blocksize
  1. 的大小,默认值为4KB。在生产环境中总是会适当调大一些,一般32KB比较合适,对于机械硬盘可以再增大到128~256KB,充分利用其顺序读取能力。但是需要注意,如果 block 大小增大而 block cache 大小不变,那么缓存的 block 数量会减少,无形中会增加读放大。
  • block_cache_size | state.backend.rocksdb.block.cache-size
  1. cache 的大小,默认为8MB。由上文所述的读写流程可知,较大的 block cache 可以有效避免热数据的读请求落到 sstable 上,所以若内存余量充足,建议设置到128MB甚至256MB,读性能会有非常明显的提升。

Tuning Compaction

compaction 在所有基于 LSM Tree 的存储引擎中都是开销最大的操作,弄不好的话会非常容易阻塞读写。建议看官先读读前面那篇关于 RocksDB 的 compaction 策略的文章,获取一些背景知识,这里不再赘述。

  • compaction_style | state.backend.rocksdb.compaction.style
  1. 算法,使用默认的 LEVEL(即 leveled compaction)即可,下面的参数也是基于此。
  • target_file_size_base | state.backend.rocksdb.compaction.level.target-file-size-base
    L1层单个 sstable 文件的大小阈值,默认值为64MB。每向上提升一级,阈值会乘以因子 target_file_size_multiplier(但默认为1,即每级sstable最大都是相同的)。显然,增大此值可以降低 compaction 的频率,减少写放大,但是也会造成旧数据无法及时清理,从而增加读放大。此参数不太容易调整,一般不建议设为256MB以上。
  • max_bytes_for_level_base | state.backend.rocksdb.compaction.level.max-size-level-base
    L1层的数据总大小阈值,默认值为256MB。每向上提升一级,阈值会乘以因子 max_bytes_for_level_multiplier(默认值为10)。由于上层的大小阈值都是以它为基础推算出来的,所以要小心调整。建议设为 target_file_size_base 的倍数,且不能太小,例如5~10倍。
  • level_compaction_dynamic_level_bytes | state.backend.rocksdb.compaction.level.use-dynamic-size
    这个参数之前讲过。当开启之后,上述阈值的乘法因子会变成除法因子,能够动态调整每层的数据量阈值,使得较多的数据可以落在最高一层,能够减少空间放大,整个 LSM Tree 的结构也会更稳定。对于机械硬盘的环境,强烈建议开启。

Generic Parameters

  • max_open_files | state.backend.rocksdb.files.open
    顾名思义,是 RocksDB 实例能够打开的最大文件数,默认为-1,表示不限制。由于sstable的索引和布隆过滤器默认都会驻留内存,并占用文件描述符,所以如果此值太小,索引和布隆过滤器无法正常加载,就会严重拖累读取性能。
  • max_background_compactions/max_background_flushes | state.backend.rocksdb.thread.num
    后台负责 flush 和 compaction 的最大并发线程数,默认为1。注意 Flink 将这两个参数合二为一处理(对应 DBOptions.setIncreaseParallelism() 方法),鉴于 flush 和 compaction 都是相对重的操作,如果 CPU 余量比较充足,建议调大,在我们的实践中一般设为4。

结语

除了上述设置参数的方法之外,用户还可以通过实现 ConfigurableRocksDBOptionsFactory 接口,创建 DBOptions 和 ColumnFamilyOptions 实例来传入自定义参数,更加灵活一些。看官可参考 Flink 预先定义好的几个 RocksDB 参数集(位于 PredefinedOptions 枚举中)获取更多信息。

本文转载自 LittleMagic 的博客,原文链接:
https://www.jianshu.com/p/bc7309b03407

更多 Flink 技术交流可扫码加入社区钉钉大群。

最新钉群二维码.jpeg

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1天前
|
SQL 存储 分布式计算
阿里巴巴瓴羊基于 Flink 实时计算的优化和实践
本⽂整理⾃阿里云智能集团技术专家王柳焮⽼师在 Flink Forward Asia 2023 中平台建设专场的分享。
305 2
阿里巴巴瓴羊基于 Flink 实时计算的优化和实践
|
1天前
|
消息中间件 缓存 关系型数据库
Flink CDC产品常见问题之upsert-kafka增加参数报错如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
|
1天前
|
SQL JSON 关系型数据库
Flink CDC实践(二)
Flink CDC实践(二)
|
1天前
|
SQL 存储 API
阿里云实时计算Flink的产品化思考与实践【下】
本文整理自阿里云高级产品专家黄鹏程和阿里云技术专家陈婧敏在 FFA 2023 平台建设专场中的分享。
111271 154
阿里云实时计算Flink的产品化思考与实践【下】
|
1天前
|
SQL 运维 DataWorks
Flink CDC在阿里云DataWorks数据集成应用实践
本文整理自阿里云 DataWorks 数据集成团队的高级技术专家 王明亚(云时)老师在 Flink Forward Asia 2023 中数据集成专场的分享。
533 2
Flink CDC在阿里云DataWorks数据集成应用实践
|
1天前
|
消息中间件 SQL Java
阿里云Flink-自定义kafka format实践及踩坑记录(以protobuf为例)
阿里云Flink-自定义kafka format实践及踩坑记录(以protobuf为例)
|
1天前
|
SQL 存储 数据处理
阿里云实时计算Flink的产品化思考与实践【上】
本文整理自阿里云高级产品专家黄鹏程和阿里云技术专家陈婧敏在 FFA 2023 平台建设专场中的分享。
3408 4
阿里云实时计算Flink的产品化思考与实践【上】
|
1天前
|
存储 SQL Oracle
flink cdc 时区问题之文档添加参数无效如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
|
1天前
|
分布式计算 关系型数据库 OLAP
阿里云AnalyticDB基于Flink CDC+Hudi实现多表全增量入湖实践
阿里云AnalyticDB基于Flink CDC+Hudi实现多表全增量入湖实践
94 0
|
1天前
|
存储 运维 监控
飞书深诺基于Flink+Hudi+Hologres的实时数据湖建设实践
通过对各个业务线实时需求的调研了解到,当前实时数据处理场景是各个业务线基于Java服务独自处理的。各个业务线实时能力不能复用且存在计算资源的扩展性问题,而且实时处理的时效已不能满足业务需求。鉴于当前大数据团队数据架构主要解决离线场景,无法承接更多实时业务,因此我们需要重新设计整合,从架构合理性,复用性以及开发运维成本出发,建设一套通用的大数据实时数仓链路。本次实时数仓建设将以游戏运营业务为典型场景进行方案设计,综合业务时效性、资源成本和数仓开发运维成本等考虑,我们最终决定基于Flink + Hudi + Hologres来构建阿里云云原生实时湖仓,并在此文中探讨实时数据架构的具体落地实践。
飞书深诺基于Flink+Hudi+Hologres的实时数据湖建设实践

相关产品

  • 实时计算 Flink版