【数据湖开发治理篇】——数据湖开发治理平台DataWorks

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
简介: 元数据管理、数据集成、数据开发是数据湖需要解决的三大问题,阿里云的DataWorks作为一个通用的大数据平台,除了很好的解决了数仓场景的各类问题,也同样解决了数据湖场景中的核心痛点。

数据湖的定义:

wikipedia中对于数据湖的定义是:“A data lake is a system or repository of data stored in its natural/raw format, usually object blobs or files. A data lake is usually a single store of all enterprise data including raw copies of source system data and transformed data used for tasks such as reporting, visualization, advanced analytics and machine learning.”
可见数据湖是一个通用的数据存储,通用到可以存储任意类型的数据。

数据湖要考虑的首要问题:

从定义看,一块u盘即符合数据湖的定义。u盘可以是数据湖,oss可以是数据湖,hdfs、盘古也可以是数据湖。它们均严格的符合数据湖的定义。作为企业的数据湖技术选型第一个需要考虑的问题就是:采用什么样的存储介质或存储系统作为自己的数据湖解决方案。众所周知,不同的存储介质或存储系统有不同的优势和劣势。比如:有的存储系统随机读取的响应时间更好、有的系统批量读取的吞吐量更好、有的系统存储成本更低、有的系统扩展性更好、有的系统结构化数据组织得更高效...相应的,这些提到的各个指标中有些恰恰是有些存储所不擅长的,如何享有所有存储系统的优势、规避所有存储系统的劣势变成了云上数据湖服务要考虑的首要问题。

要解决这个矛盾的问题,在理论上是不可能一劳永逸的。聪明的做法是对上提供一个逻辑上的存储解决方案,然后让需要不同访问特点的数据灵活地在各种底层存储系统中迁移。通过便捷的数据迁移(、以及数据格式转化)的能力, 来充分发挥出各个存储系统的优势。结论:成熟的数据湖一定是一个逻辑上的存储系统,它的底层是多个各种类型的存储系统所组成。

数据湖要解决的三大问题:

元数据管理、数据集成、数据开发是数据湖需要解决的三大问题,阿里云的DataWorks作为一个通用的大数据平台,除了很好的解决了数仓场景的各类问题,也同样解决了数据湖场景中的核心痛点。

元数据管理:

用户的湖上数据需要有个统一集中的管理能力,这就成了数据湖的第一个核心能力。dataworks的数据治理能力便是用来解决数据湖中的各类存储系统的元数据管理的。目前它管理了云上11中数据源的元数据。涵盖OSS、EMR、MaxCompute、Hologres、mysql、PostgreSQL、SQL Server、Oracle、AnalyticDB for PostgreSQL、AnalyticDB for MySQL 2.0、AnalyticDB for MySQL 3.0 等云上主要数据源类型的元数据管理。功能上涵盖元数据采集、存储检索、在线元数据服务、数据预览、分类打标、数据血缘、数据探查、影响分析、资源优化等能力。

技术的宏观架构如图:

56.png

产品形态如图:

45.png

67.png

数据集成:

数据湖中的数据管理起来之后,就会面临数据在各个存储系统中迁移和转化的能力。为此dataworks的数据集成能力可以做到40种类常见数据源的导入导出及格式转化的能力,同时覆盖了离线和实时两大同步场景,以及可以解决对外对接时的复杂网络场景。

数据集成核心能力:

34.png

离线同步功能:

35.png

实时同步功能:

36.png

数据开发:

解决了数据湖的存储管理和数据迁移问题后,接下来就是如何让数据湖中的数据更好的赋能业务。这就需要引入各类计算引擎,计算平台事业部拥有丰富的各类计算引擎,有开源体系的spark、presto、hive、flink,还有自研的MaxCompute、Hologres,这里的挑战在于如何方便的发挥各类引擎的长处,让湖中的数据能够被各类引擎访问和计算。为此dataworks提供了便捷的数据迁移方式(方便数据在各类引擎中流转穿梭)、提供一站式的数据开发环境,从即席查询到周期的etl开发,dataworks提供了各个计算引擎的统一计算任务的开发和运维能力。
38.png

数据开发产品:

39.png

至此、dataworks在解决了数据湖底层的存储系统差异的难题后,提供了完备的湖上元数据管理、数据治理、数据迁移转换、数据计算的全流程能力。让阿里云上的数据湖更好的给客户发挥出业务价值。


更多数据湖技术相关的文章请点击:阿里云重磅发布云原生数据湖体系


更多数据湖相关信息交流请加入阿里巴巴数据湖技术钉钉群
数据湖钉群.JPG

相关实践学习
基于Hologres轻量实时的高性能OLAP分析
本教程基于GitHub Archive公开数据集,通过DataWorks将GitHub中的项⽬、行为等20多种事件类型数据实时采集至Hologres进行分析,同时使用DataV内置模板,快速搭建实时可视化数据大屏,从开发者、项⽬、编程语⾔等多个维度了解GitHub实时数据变化情况。
相关文章
|
21天前
|
SQL 分布式计算 关系型数据库
Dataphin x Paimon 开箱即用的数据湖治理解决方案
Dataphin深度集成Apache Paimon,通过全链路功能适配和性能优化,为企业提供开箱即用的数据湖治理解决方案。
117 2
|
3月前
|
数据采集 运维 DataWorks
DataWorks 千万级任务调度与全链路集成开发治理赋能智能驾驶技术突破
智能驾驶数据预处理面临数据孤岛、任务爆炸与开发运维一体化三大挑战。DataWorks提供一站式的解决方案,支持千万级任务调度、多源数据集成及全链路数据开发,助力智能驾驶模型数据处理与模型训练高效落地。
|
3月前
|
SQL DataWorks 关系型数据库
DataWorks+Hologres:打造企业级实时数仓与高效OLAP分析平台
本方案基于阿里云DataWorks与实时数仓Hologres,实现数据库RDS数据实时同步至Hologres,并通过Hologres高性能OLAP分析能力,完成一站式实时数据分析。DataWorks提供全链路数据集成与治理,Hologres支持实时写入与极速查询,二者深度融合构建离在线一体化数仓,助力企业加速数字化升级。
|
SQL 分布式计算 Apache
Dataphin x Iceberg 开箱即用的数据湖治理解决方案
Apache Iceberg作为新一代开源数据湖表格式,具备ACID事务、时间旅行和高效Schema演化等能力。Dataphin已完成与Iceberg的深度集成,通过全链路适配与性能优化,为企业提供开箱即用的数据湖治理方案,涵盖数据源支持、离线与实时数据集成、数据研发等核心模块,助力构建现代化数据架构。
172 0
|
6月前
|
数据采集 SQL 人工智能
长文详解|DataWorks Data+AI一体化开发实战图谱
DataWorks是一站式智能大数据开发治理平台,内置阿里巴巴15年大数据建设方法论,深度适配阿里云MaxCompute、EMR、Hologres、Flink、PAI 等数十种大数据和AI计算服务,为数仓、数据湖、OpenLake湖仓一体数据架构提供智能化ETL开发、数据分析与主动式数据资产治理服务,助力“Data+AI”全生命周期的数据管理。
1069 5
|
8月前
|
存储 SQL 分布式计算
AllData数据中台核心菜单十三:数据湖平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
AllData数据中台核心菜单十三:数据湖平台
|
9月前
|
数据采集 机器学习/深度学习 DataWorks
DataWorks产品评测:大数据开发治理的深度体验
DataWorks产品评测:大数据开发治理的深度体验
379 1
|
10月前
|
SQL 人工智能 自然语言处理
DataWorks年度发布:智能化湖仓一体数据开发与治理平台的演进
阿里云在过去15年中持续为268集团提供数据服务,积累了丰富的实践经验,并连续三年在IDC中国数据治理市场份额中排名第一。新一代智能数据开发平台DateWorks推出了全新的DateStudio IDE,支持湖仓一体化开发,新增Flink计算引擎和全面适配locs,优化工作流程系统和数据目录管理。同时,阿里云正式推出个人开发环境模式和个人Notebook,提升开发者体验和效率。此外,DateWorks Copilot通过自然语言生成SQL、代码补全等功能,显著提升了数据开发与分析的效率,已累计帮助开发者生成超过3200万行代码。
|
10月前
|
人工智能 Cloud Native 大数据
DataWorks深度技术解读:构建开放的云原生数据开发平台
Dateworks是一款阿里云推出的云原生数据处理产品,旨在解决数据治理和数仓管理中的挑战。它强调数据的准确性与一致性,确保商业决策的有效性。然而,严格的治理模式限制了开发者的灵活性,尤其是在面对多模态数据和AI应用时。为应对这些挑战,Dateworks进行了重大革新,包括云原生化、开放性增强及面向开发者的改进。通过Kubernetes作为资源底座,Dateworks实现了更灵活的任务调度和容器化支持,连接更多云产品,并提供开源Flowspec和Open API,提升用户体验。
|
9月前
|
DataWorks 监控 数据建模
DataWorks产品体验评测
DataWorks产品体验评测